年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    (通用版)中考数学总复习考点23 平行四边形(含解析) 试卷

    (通用版)中考数学总复习考点23  平行四边形(含解析)第1页
    (通用版)中考数学总复习考点23  平行四边形(含解析)第2页
    (通用版)中考数学总复习考点23  平行四边形(含解析)第3页
    还剩18页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (通用版)中考数学总复习考点23 平行四边形(含解析)

    展开

    这是一份(通用版)中考数学总复习考点23 平行四边形(含解析),共21页。试卷主要包含了平行四边形定义,平行四边形的性质,平行四边形的判定,平行四边形的面积等内容,欢迎下载使用。
    专题23 平行四边形问题

    1.平行四边形定义
    有两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“□ABCD”表示,读作“平行四边形ABCD”。
    2.平行四边形的性质
    (1)平行四边形的对边平行且相等;
    (2)平行四边形的对角相等;
    (3)平行四边形的对角线互相平分。
    3.平行四边形的判定
    (1)两组对边分别平行的四边形是平行四边形;
    (2)两组对边分别相等的四边形是平行四边形;
    (3)一组对边平行且相等的四边形是平行四边形;
    (4)对角线互相平分的四边形是平行四边形;
    (5)两组对角分别相等的四边形是平行四边形。
    4.平行四边形的面积:S平行四边形=底边长×高=ah

    【例题1】(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为(  )

    A.40° B.50° C.60° D.70°
    【答案】D
    【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.
    【解析】∵在△ABC中,∠A=40°,AB=AC,
    ∴∠C=(180°﹣40°)÷2=70°,
    ∵四边形BCDE是平行四边形,
    ∴∠E=70°.
    【对点练习】(•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是(  )

    A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
    【答案】A
    【解析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD
    ∵对角线BD上的两点M、N满足BM=DN,
    ∴OB﹣BM=OD﹣DN,即OM=ON,
    ∴四边形AMCN是平行四边形,
    ∵OM=AC,
    ∴MN=AC,
    ∴四边形AMCN是矩形.
    【例题2】(2020•凉山州)如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于 16 .

    【答案】16.
    【解析】由平行四边形的性质得AB=CD,AD=BC,OB=OD,证OE是△ABD的中位线,则AB=2OE,AD=2AE,求出AE+OE=4,则AB+AD=2AE+2OE=8,即可得出答案.
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,OB=OD,
    ∵OE∥AB,
    ∴OE是△ABD的中位线,
    ∴AB=2OE,AD=2AE,
    ∵△AOE的周长等于5,
    ∴OA+AE+OE=5,
    ∴AE+OE=5﹣OA=5﹣1=4,
    ∴AB+AD=2AE+2OE=8,
    ∴▱ABCD的周长=2×(AB+AD)=2×8=16;
    【对点练习】(•湖北武汉)如图所示,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为   .

    【答案】21°.
    【解析】设∠ADE=x,
    ∵AE=EF,∠ADF=90°,
    ∴∠DAE=∠ADE=x,DE=AF=AE=EF,
    ∵AE=EF=CD,
    ∴DE=CD,
    ∴∠DCE=∠DEC=2x,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠BCA=x,
    ∴∠DCE=∠BCD﹣∠BCA=63°﹣x,
    ∴2x=63°﹣x,
    解得:x=21°,
    即∠ADE=21°。
    【例题3】(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
    (1)若OE,求EF的长;
    (2)判断四边形AECF的形状,并说明理由.

    【答案】见解析。
    【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF,进而得出EF的长;
    (2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.
    【解析】(1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,AO=CO,
    ∴∠FCO=∠EAO,
    又∵∠AOE=∠COF,
    ∴△AOE≌△COF(ASA),
    ∴OE=OF,
    ∴EF=2OE=3;
    (2)四边形AECF是菱形,
    理由:∵△AOE≌△COF,
    ∴AE=CF,
    又∵AE∥CF,
    ∴四边形AECF是平行四边形,
    又∵EF⊥AC,
    ∴四边形AECF是菱形.

    【对点练习】(湖南省永州市)如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
    (1)求证:BE=CD.
    (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

    【答案】见解析。
    【解析】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠AEB.又AE平分∠BAD,∴∠DAE=∠BAE. ∴∠BAE=∠AEB. ∴BE=AB.又AB=CD,∴BE=CD.
    (2)∵BE=AB,BF⊥AE,∴AF=EF,∵AD∥BE,∴∠D=∠DCE,∠DAF=∠FEC,
    ∴△ADF≌△ECF(AAS).∴S平行四边形ABCD=S△ABE.∵BE=AB,∠BEA=60°,
    ∴△ABE为等边三角形.
    ∴S△ABE=AE·BF=×4×4sin60°=×4×4×=.
    ∴S平行四边形ABCD=.

    一、选择题
    1.(2020•衡阳)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是(  )

    A.AB∥DC,AD∥BC B.AB=DC,AD=BC
    C.AB∥DC,AD=BC D.OA=OC,OB=OD
    【答案】C
    【分析】根据平行四边形的定义,可以得到选项A中的条件可以判断四边形ABCD是平行四边形;根据两组对边分别相等的四边形是平行四边形,可以得到选项B中的条件可以判断四边形ABCD是平行四边形;根据对角线互相平分的四边形是平行四边形,可以得到选项D中的条件可以判断四边形ABCD是平行四边形;选项C中的条件,无法判断四边形ABCD是平行四边形.
    【解析】∵AB∥DC,AD∥BC,
    ∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;
    ∵AB=DC,AD=BC,
    ∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;
    ∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;
    ∵OA=OC,OB=OD,
    ∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形.
    2.(2020•临沂)如图所示,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则(  )

    A.S1+S2 B.S1+S2
    C.S1+S2 D.S1+S2的大小与P点位置有关
    【答案】C
    【分析】根据题意,作出合适的辅助线,然后根据图形和平行四边形的面积、三角形的面积,即可得到S和S1、S2之间的关系,本题得以解决.
    【解析】过点P作EF⊥AD交AD于点E,交BC于点F,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,
    ∴S=BC•EF,,,
    ∵EF=PE+PF,AD=BC,
    ∴S1+S2

    3.(2020•陕西)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为(  )

    A. B. C.3 D.2
    【答案】D
    【分析】依据直角三角形斜边上中线的性质,即可得到EF的长,再根据梯形中位线定理,即可得到CG的长,进而得出DG的长.
    【解析】∵E是边BC的中点,且∠BFC=90°,
    ∴Rt△BCF中,EFBC=4,
    ∵EF∥AB,AB∥CG,E是边BC的中点,
    ∴F是AG的中点,
    ∴EF是梯形ABCG的中位线,
    ∴CG=2EF﹣AB=3,
    又∵CD=AB=5,
    ∴DG=5﹣3=2
    4.(▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是(  )

    A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
    【答案】B.
    【解析】利用三角形中位线定理得到DEAC,结合平行四边形的判定定理进行选择.
    ∵在△ABC中,D,E分别是AB,BC的中点,
    ∴DE是△ABC的中位线,
    ∴DEAC.
    A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
    B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.
    C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
    D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.
    二、填空题
    5.(2020•武汉)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是   .

    【答案】26°.
    【解析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.
    ∵四边形ABCD是平行四边形,
    ∴∠ABC=∠D=102°,AD=BC,
    ∵AD=AE=BE,
    ∴BC=AE=BE,
    ∴∠EAB=∠EBA,∠BEC=∠ECB,
    ∵∠BEC=∠EAB+∠EBA=2∠EAB,
    ∴∠ACB=2∠CAB,
    ∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,
    ∴∠BAC=26°
    6.(2020•天津)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为   .

    【答案】.
    【解析】根据平行四边形的性质和等边三角形的性质,可以得到BF和BE的长,然后可以证明△DCG和△EHG全等,然后即可得到CG的长.
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,CD=AB,DC∥AB,
    ∵AD=3,AB=CF=2,
    ∴CD=2,BC=3,
    ∴BF=BC+CF=5,
    ∵△BEF是等边三角形,G为DE的中点,
    ∴BF=BE=5,DG=EG,
    延长CG交BE于点H,
    ∵DC∥AB,
    ∴∠CDG=∠HEG,
    在△DCG和△EHG中,

    ∴△DCG≌△EHG(ASA),
    ∴DC=EH,CG=HG,
    ∵CD=2,BE=5,
    ∴HE=2,BH=3,
    ∵∠CBH=60°,BC=BH=3,
    ∴△CBH是等边三角形,
    ∴CH=BC=3,
    ∴CGCH


    7.(湖南娄底)如图,平行四边形ABCD 的对角线 AC、BD 交于点 O,点 E 是 AD 的中点,△BCD 的周长为 18,则△DEO 的周长是  .

    【答案】9.
    【解析】∵E 为 AD 中点,四边形 ABCD 是平行四边形,
    ∴DE= AD= BC,DO=BD,AO=CO,
    ∴OE= CD,
    ∵△BCD 的周长为 18,
    ∴BD+DC+B=18,
    ∴△DEO 的周长是 DE+OE+DO=(BC+DC+BD)=×18=9
    8.( 河南省)如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是_________.

    【答案】110°
    【解析】本题考查了平行四边形的性质和和三角形外角的性质求角的大小,解题的关键是熟练运用平行四边形性质或三角形外角的有关知识.思路:首先利用平行四边形的性质求出∠BAE的度数,再由∠2是△ABE的外角求出∠2的大小.
    ∵四边形ABCD是平行四边形
    ∴AB∥CD,
    ∴∠BAE=∠1=20°
    ∵BE⊥AB
    ∴∠ABE=90°
    ∵∠2是△ABE的外角
    ∴∠2=∠ABE+∠BAE=90°+20°=110 ,故答案为110°.
    9.(浙江金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是 .

    【答案】80°
    【解析】延长DE交AB于F,根据平行四边形的性质及三角形内外角的关系可以确定∠AED的度数.

    延长DE交AB于F,因为AB∥CD,BC∥DE,所以四边形BCDF为平行四边形,因为∠C=120°,所以∠BFD=120°,所以∠AFD=60°,又∠A=20°,所以∠AED=60°+20°=80°,故答案为80° .
    三、解答题
    10.(2020•广元)已知▱ABCD,O为对角线AC的中点,过O的一条直线交AD于点E,交BC于点F.
    (1)求证:△AOE≌△COF;
    (2)若AE:AD=1:2,△AOE的面积为2,求▱ABCD的面积.

    【答案】见解析。
    【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;
    (2)由于AE:AD=1:2,O为对角线AC的中点,得出△AEO∽△ADC,根据△AOE的面积为2,可得△ADC的面积,进而得到平行四边形ABCD的面积.
    【解析】(1)∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠EAO=∠FCO,
    ∵O是AC的中点,
    ∴OA=OC,
    在△AOE和△COF中,,
    ∴△AOE≌△COF(ASA);
    (2)∵AE:AD=1:2,O为对角线AC的中点,
    ∴AO:AC=1:2,
    ∵∠EAO=∠DAC,
    ∴△AEO∽△ADC,
    ∵△AOE的面积为2,
    ∴△ADC的面积为8,
    ∴平行四边形ABCD的面积为16.
    11.(2020•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.
    (1)求证:△ADE≌△CBF;
    (2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.

    【答案】见解析。
    【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;
    (2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.
    【解答】(1)证明:∵四边形ABCD是平行四边形,
    ∴AD=CB,∠ADC=∠CBA,
    ∴∠ADE=∠CBF,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS);
    (2)当BD平分∠ABC时,四边形AFCE是菱形,
    理由:∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,AD∥BC,
    ∴∠ADB=∠CBD,
    ∴∠ABD=∠ADB,
    ∴AB=AD,
    ∴平行四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴AC⊥EF,
    ∵DE=BF,
    ∴OE=OF,
    又∵OA=OC,
    ∴四边形AFCE是平行四边形,
    ∵AC⊥EF,
    ∴四边形AFCE是菱形.

    12.(2020•重庆)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.
    (1)若∠AOE=50°,求∠ACB的度数;
    (2)求证:AE=CF.

    【答案】见解析。
    【分析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.
    (2)证明△AEO≌△CFO(AAS)可得结论.
    【解答】(1)解:∵AE⊥BD,
    ∴∠AEO=90°,
    ∵∠AOE=50°,
    ∴∠EAO=40°,
    ∵CA平分∠DAE,
    ∴∠DAC=∠EAO=40°,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∠ACB=∠DAC=40°,
    (2)证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,
    ∵AE⊥BD,CF⊥BD,
    ∴∠AEO=∠CFO=90°,
    ∵∠AOE=∠COF,
    ∴△AEO≌△CFO(AAS),
    ∴AE=CF.
    13.(2020•岳阳)如图,点E,F在▱ABCD的边BC,AD上,BEBC,FDAD,连接BF,DE.
    求证:四边形BEDF是平行四边形.

    【答案】见解析。
    【分析】根据平行四边形的性质得出AD=BC,AD∥BC,进而得出DF=BE,利用平行四边形的判定解答即可.
    【解析】∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∵BEBC,FDAD,
    ∴BE=DF,
    ∵DF∥BE,
    ∴四边形BEDF是平行四边形.
    14.(2020•淮安)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.
    (1)求证:△AOF≌△COE;
    (2)连接AE、CF,则四边形AECF  (填“是”或“不是”)平行四边形.

    【答案】见解析。
    【分析】(1)由ASA证明△AOF≌△COE即可;
    (2)由全等三角形的性质得出FO=EO,再由AO=CO,即可得出结论.
    【解答】(1)证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠OAF=∠OCE,
    在△AOF和△COE中,,
    ∴△AOF≌△COE(ASA)
    (2)解:四边形AECF是平行四边形,理由如下:
    由(1)得:△AOF≌△COE,
    ∴FO=EO,
    又∵AO=CO,
    ∴四边形AECF是平行四边形;
    故答案为:是.
    15.(2020•陕西)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.
    求证:AD=BE.

    【答案】见解析。
    【分析】根据等边对等角的性质求出∠DEC=∠C,在由∠B=∠C得∠DEC=∠B,所以AB∥DE,得出四边形ABCD是平行四边形,进而得出结论.
    【解答】证明:∵DE=DC,
    ∴∠DEC=∠C.
    ∵∠B=∠C,
    ∴∠B=∠DEC,
    ∴AB∥DE,
    ∵AD∥BC,
    ∴四边形ABED是平行四边形.
    ∴AD=BE.


    相关试卷

    (通用版)中考数学总复习考点47 中考数学转化思想(含解析):

    这是一份(通用版)中考数学总复习考点47 中考数学转化思想(含解析),共11页。试卷主要包含了 转化思想的含义,转化思想的表现形式,1米).,7﹣11,3m.,999,,8 B. 4等内容,欢迎下载使用。

    (通用版)中考数学总复习考点26 菱形(含解析):

    这是一份(通用版)中考数学总复习考点26 菱形(含解析),共27页。试卷主要包含了菱形的定义 ,菱形的性质,菱形的判定定理等内容,欢迎下载使用。

    (通用版)中考数学总复习考点24 矩形(含解析):

    这是一份(通用版)中考数学总复习考点24 矩形(含解析),共32页。试卷主要包含了矩形的定义,矩形的性质,矩形判定定理,矩形的面积,已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map