![2023届辽宁省朝阳市高三上学期期末数学试题含答案第1页](http://img-preview.51jiaoxi.com/3/3/14796733/0-1693734131916/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023届辽宁省朝阳市高三上学期期末数学试题含答案第2页](http://img-preview.51jiaoxi.com/3/3/14796733/0-1693734131947/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023届辽宁省朝阳市高三上学期期末数学试题含答案第3页](http://img-preview.51jiaoxi.com/3/3/14796733/0-1693734131973/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023届辽宁省朝阳市高三上学期期末数学试题含答案
展开
这是一份2023届辽宁省朝阳市高三上学期期末数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2023届辽宁省朝阳市高三上学期期末数学试题 一、单选题1.已知复数(是虚数单位),则在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【分析】根据复数代数形式的乘法运算化简复数,即可得到其共轭复数,再根据复数的几何意义判断即可.【详解】解:,所以,则在复平面内对应的点为,位于第四象限.故选:D2.已知集合,则等于( )A. B. C. D.【答案】B【分析】先求出集合,然后利用交集的定义即可求解.【详解】集合,,由交集的定义可得:.故选:.3.已知四棱台的上、下底面分别是边长为和的正方形,侧面均为腰长为的等腰梯形,则该四棱台的表面积为( )A. B.C. D.【答案】C【分析】计算出四棱台侧面的高,再利用梯形和正方形的面积公式可求得该四棱台的表面积.【详解】设在正四棱台中,取侧面,则,,,如下图所示:分别过点、在侧面内作,,垂足分别为、,因为,,,所以,,,因为,,,故四边形为矩形,故,所以,,,因此,该四棱台的表面积为.故选:C.4.若,则( )A. B. C. D.【答案】B【分析】根据同角三角函数的基本关系将弦化切,即可求出,再由两角和的正切公式计算可得.【详解】解:因为,所以,解得,所以.故选:B5.已知抛物线的焦点为F,准线为l,点P为C上一点,过P作l的垂线,垂足为A,若AF的倾斜角为150°,则( )A.6 B.5 C.4 D.3【答案】C【分析】画出图形,得到,从而求出,进而求出,利用焦半径公式求出.【详解】由题意得:,准线方程为,设准线与轴交于点K,,故,因为AF的倾斜角为150°,所以,故,即,故,解得:,所以.故选:C6.已知小郭、小张和小陆三名同学同时独立地解答一道概率试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,小陆同学解答不正确的概率是( )A. B. C. D.【答案】C【分析】记“三人中至少有两人解答正确”为事件A,“小陆同学解答不正确”为事件B,则在三人中至少有两人解答正确的条件下,小陆同学解答不正确的概率为,由条件概率计算公式可得答案.【详解】记“三人中至少有两人解答正确”为事件A,“小陆同学解答不正确”为事件B,则,,则.故选:C7.在等比数列中.则能使不等式成立的正整数的最大值为( )A.13 B.14 C.15 D.16【答案】C【分析】首先可得,即可得到时,,时,,再根据下标和性质得到,,,,即可得到,从而得解.【详解】解:因为,所以公比,则,时,,时,,又,所以,,,,则,又当时,,所以能使不等式成立的最大正整数是.故选:C.8.已知函数,若函数在区间上有两个零点,则的取值范围是( )A. B.C. D.【答案】D【分析】根据函数在区间上有两个零点,可以求得的取值范围,以及的值,代入构造新的函数,求导讨论函数的单调性,即可求得新构造函数的值域.【详解】因为函数在区间上有两个零点,即在区间上有两个交点,如图所示:则的取值范围是,又两个零点为,所以令,则,,,则令,,,,因为的取值范围是,所以在的范围内单调递增,,所以在恒成立,即在上单调递增,又,则的取值范围是.故选:D 二、多选题9.已知,则( )A. B.C. D.【答案】ABD【分析】依题意可得,即可判断A、B、C,再根据指数函数的性质判断D.【详解】解:因为,所以,则,所以,故A正确;则,所以,故B正确;因为,所以,则,故C错误;由,则,所以,故D正确;故选:ABD10.已知函数,则( )A.的图象向右平移个单位长度后得到函数的图象B.的图象与的图象关于y轴对称C.的单调递减区间为D.在上有3个零点,则实数a的取值范围是【答案】ABC【分析】根据三角恒等变换求出,根据三角函数的图象性质即可求解.【详解】,所以,对于A,的图象向右平移个单位长度后得到函数,即,A正确;对于B,,B正确;对于C,由解得,所以函数的单调递减区间为,C正确;因为所以因为在上有3个零点,所以,解得,D错误,故选:ABC.11.已知点在直线上,点在圆上,则下列说法正确的是( )A.点到的最大距离为B.若被圆所截得的弦长最大,则C.若为圆的切线,则的取值范围为D.若点也在圆上,则到的距离的最大值为【答案】ABD【分析】求出圆心到直线距离的最大值,可求得到的最大距离,可判断A选项的正误;将圆心的坐标代入直线的方程,求出的值,可判断B选项的正误;利用圆心到直线的距离等于半径,结合点到直线的距离公式求出的值,可判断C选项的正误;分析可知当直线与圆相切,求出到的距离的最大值,可判断D选项的正误.【详解】对于A选项,由题意可知,直线过定点,圆的圆心为原点,半径为,设圆心到直线的距离为.当时,,当与直线不垂直时,.综上所述,,所以,点到的最大距离为,A对;对于B选项,若被圆所截得的弦长最大,则直线过圆心,可得,所以,B对;对于C选项,若为圆的切线,则,解得,C错;对于D选项,若也在圆上,则直线与圆相切或相交,当直线与圆相切时,到的距离取最大值,D对.故选:ABD.12.将1,2,3,4,5,6,7这七个数随机地排成一个数列,记第i项为,则下列说法正确的是( )A.若,则这样的数列共有360个B.若所有的奇数不相邻,所有的偶数也不相邻,则这样的数列共有288个C.若该数列恰好先减后增,则这样的数列共有50个D.若,则这样的数列共有71个【答案】AD【分析】根据对称性可得,即可判断A,对于B:则这样的数列只能是“奇、偶、奇、偶、奇、偶、奇”,即可判断B,对于C:对的位置分类讨论,对于D,分、、三种情况讨论.【详解】解:对于A:由于为奇数,根据对称性可知这样的数列有个,故A正确;对于B:若所有的奇数不相邻,所有的偶数也不相邻,则这样的数列只能是“奇、偶、奇、偶、奇、偶、奇”,则有个,故B错误;对于C:从1,2,3,4,5,6中选出个数排在的右侧,其余排在的左侧,得到先减后增的数列有个;从1,2,3,4,5,6中选出2个数排在的右侧,其余排在的左侧,得到先减后增的数列有个;从1,2,3,4,5,6中选出3个数排在的右侧,其余排在的左侧,得到先减后增的数列有个;从1,2,3,4,5,6中选出4个数排在的右侧,其余排在的左侧,得到先减后增的数列有个;从1,2,3,4,5,6中选出5个数排在的右侧,其余排在的左侧,得到先减后增的数列有个;故满足条件的总个数为:个,故C错误.对于D:若则这样的数列有个,若则这样的数列有个,若则这样的数列有个,所以满足条件的这样的数列共有个,故D正确;故选:AD 三、填空题13.已知向量,若,则 .【答案】【分析】根据平面向量共线的坐标表示得到方程,求出的值,即可得到、的坐标,再求出,最后根据向量模的坐标表示计算可得.【详解】解:因为,且,所以,解得,所以,,则,所以.故答案为:14.若,则 .【答案】/【分析】根据题意,由指对数的相互转化,以及指数运算即可得到结果.【详解】因为,即,所以即故答案为:15.已知点分别是椭圆的左、右焦点,过的直线交椭圆于A,B两点,且满足,则该椭圆的离心率是 .【答案】【分析】设,则,利用勾股定理可求得,再利用椭圆的定义可得出,求出、,利用勾股定理结合离心率公式可求得结果.【详解】如下图所示:设,则,因为,则,由椭圆的定义可得,则,所以,,则,由勾股定理可得,则,则,因此,该椭圆的离心率为.故答案为:16.如图,在棱长为4的正方体中,是的中点,点是侧面上的动点.且平面,则线段长度的取值范围是 .【答案】【分析】取的中点,的中点,的中点,连接、、、,根据正方体的性质得到,即可得到平面,同理可证平面,从而证明平面平面,即可得到在线段上,再求出、,即可求出的取值范围.【详解】解:如图,取的中点,的中点,的中点,连接、、、,根据正方体的性质可得,平面,平面,所以平面,同理可证平面,,平面,所以平面平面,又平面平面,且平面,平面,点是侧面上的动点,所以在线段上,又,所以,,,所以,则,所以线段长度的取值范围是.故答案为: 四、解答题17.在中,角A,B,C的对边分别为a,b,c,且.(1)求角B的大小;(2)如图,若D是外接圆的劣弧AC上一点,且.求AD.【答案】(1)(2)2 【分析】(1)利用正弦定理边化角结合三角恒等变换即可求解;(2)利用余弦定理分别在和解三角形可求解.【详解】(1)由边化角可得,即,即,所以,因为,所以,所以,,所以.(2)在中,由余弦定理得,所以,由圆的内接四边形的性质可知,在中,由余弦定理得,所以即,解得或(舍).18.在等比数列中(1)求的通项公式;(2)设,求的前n项和.【答案】(1);(2). 【分析】(1)根据等比数列的通项公式列式运算求解;(2)根据题意可得:,利用并项求和运算求解.【详解】(1)由题意可得:,∵,则,解得或(舍去),∴的通项公式;(2)由(1)可得:,若为奇数,可得,则有:当为奇数时,则;当为偶数时,则;综上所述:.19.某地区2015年至2021年居民家庭人均存款y(单位:万元)数据如下表:年份2015201620172018201920202021年份代号x1234567人均存款y1.41.82.12.93.33.74.4变量x,y具有线性相关关系.(1)求y关于x的线性回归方程,并预测2022年该地区居民家庭人均存款;(2)若由线性回归方程得到的估计数据与检测数据的误差为0,则称该数据为“完美数据”现从这些数据中随机抽取2个,设X为抽到的“完美数据”的个数,求X的分布列和数学期望.参考公式:回归直线方程的斜率和截距的最小二乘法估计公式分别为:.【答案】(1)线性回归方程为,2022年该地区居民家庭人均存款预测为4.8万元;(2)分布列见解析,期望为. 【分析】(1)根据线性回归方程中系数的计算公式计算系数得回归方程,令代入回归方程可得预测值;(2)由回归方程确定“完美数据”有两个,得的可能值,计算出概率的分布列,再由期望公式计算期望.【详解】(1),,,,所以线性回归方程为,时,,即2022年该地区居民家庭人均存款预测为4.8万元;(2)由(1)知“完美数据”有两个,,因此可能值是,,,,的分布列为:012.20.如图,在三棱锥中,平面PAB,,,,.(1)求证:;(2)求二面角的余弦值.【答案】(1)见解析(2) 【分析】(1)由线面垂直的性质可得,再利用勾股定理可得,从而可证得平面ABC,再根据线面垂直的性质即可得证;(2)以点B为坐标原点,建立空间直角坐标系,利用向量法求解即可.【详解】(1)证明:∵平面PAB,平面PAB,∴,又,,,所以,∴,∵,AB,平面ABC,∴平面ABC,又平面ABC,∴;(2)解:以点B为坐标原点,BA,BP所在直线分别为y,z轴,以过点B平行于AC的直线为x轴,建立如图所示的空间直角坐标系,则A(0,1,0),B(0,0,0),C(2,1,0),P(0,0,),则,,,,设平面PBC的法向量,则,令,则,,所以平面PBC的一个法向量,设平面PAC的法向量,同理可得平面PAC的一个法向量,则,由图易知二面角为锐角,∴二面角的余弦值为.21.如图,已知双曲线的左、右顶点分别为A,B,,点P是C上异于左、右顶点的任意一点,记直线PA,PB的斜率分别为,且.(1)求C的方程;(2)若点M满足,记的面积分别为.试判断是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)(2)为定值2 【分析】(1)根据求出,再利用运算结合双曲线方程得到 即可求解;(2)分别表示出以,的直线方程,进而联立确定坐标,即可求解.【详解】(1)依题意得,所以,解得,设,所以即所以所以,所以,所以双曲线方程为.(2)因为,,所以,所以的直线方程为的直线方程为由解得即的纵坐标为所以即为定值2.22.已知函数.(1)若在上恒成立,求实数a的值;(2)证明:当时,.【答案】(1)(2)证明过程见详解 【分析】(1)分,和三种情况讨论,当时,求导利用函数的单调性和最值进行求解即可;(2)结合(1)的结论,将不等式进行等价转化证明,构造函数,对函数求导,利用函数的单调性即可证明.【详解】(1)当时,,当时,,不符合题意;当时,,又时,,不符合题意;当时,,令,解得:,令,解得:,所以函数在上单调递减,在上单调递增,所以,所以,令,则,当时,,当时,,所以函数在上单调递增,在上单调递减,所以,又因为,所以.(2)由(1)知:时,在上恒成立,即,所以当时,,即,又当时,,所以,所以要证,只需证,即证,令,则有,又,所以,所以在上恒成立,即在上单调递减,,所以当时,.【点睛】思路点睛:某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,有时可以构造一个函数,借助单调性进行求解.
相关试卷
这是一份2024届辽宁省朝阳市建平县实验中学等校高三上学期12月联考数学试题含答案,共21页。试卷主要包含了单选题,多选题,填空题,证明题,解答题等内容,欢迎下载使用。
这是一份辽宁省朝阳市建平县实验中学等校2023-2024学年高三上学期12月联考数学试题,共16页。试卷主要包含了本试卷分选择题和非选择题两部分,答题前,考生务必用直径0,本卷命题范围,已知,,,则等内容,欢迎下载使用。
这是一份2024届辽宁省朝阳市名校联考高三上学期开学数学试题含解析,共15页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)