所属成套资源:中考数学二轮专项复习 (含答案)
中考数学二轮专项复习——圆的综合问题(含答案)
展开
这是一份中考数学二轮专项复习——圆的综合问题(含答案),共15页。
中考数学二轮专项复习——圆的综合问题1.(绵阳中考 第23题 )如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.
(1)求证:△BFG≌△CDG;
(2)若AD=BE=2,求BF的长.
2.(黔东南州中考 第22题12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交与点A、B, (1)若∠A=30゜,求证:PA=3PB; (2)小明发现,∠A在一定范围内变化时,始终有成立,请你写出推理过程. (贵港中考 第23题)如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.
(1)求证:AE是半圆O的切线;
(2)若PA=2,PC=4,求AE的长.
4.(湖北十堰中考 第22题 8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径. 5.在⊙O中,AB为直径,C为⊙O上一点.(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(2)如图②,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小. 6.(鄂州中考 第22题 10分)如图,PA是⊙O的切线,切点为A, AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB= , BC =1,求PO的长. 7.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,求∠DOR的度数。 8.(遂宁中考 第24题 10分)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线. 9.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积. 10.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度. 参考答案1.(绵阳中考 第23题 )如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.
(1)求证:△BFG≌△CDG;
(2)若AD=BE=2,求BF的长.
【解析】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,
∴,∴,∴CD=BF,在△BFG和△CDG中,∵,
∴△BFG≌△CDG(AAS);
(2)如图,过C作CH⊥AD于H,连接AC、BC,
∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,
∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),
∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,
∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,
∴BC2=AB•BE=6×2=12,∴BF=BC=2.
2.(黔东南州中考 第22题12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交与点A、B, (1)若∠A=30゜,求证:PA=3PB; (2)小明发现,∠A在一定范围内变化时,始终有成立,请你写出推理过程.【解析】(1)证明:PC是⊙O的切线,所以,∠PCB=∠A=30°,由AB是圆O的直径,得:∠ABC=60°,所以,∠BCP=∠BPC=30°,所以,PB=BC,又BC=,所以,PB=OB=OA,即PA=3PB(2)PC是⊙O的切线,所以,∠PCB=∠A,△ACP中,∠A+∠P+∠ACB+∠PCB=180°,所以,2∠PCB=180°-90°-∠P,所以,3.(贵港中考 第23题)如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.
(1)求证:AE是半圆O的切线;
(2)若PA=2,PC=4,求AE的长.
【解析】(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,
∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,
∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,
∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,
过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,
在△ABO与△AFO中,,
∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;
(2)解:∵AF是⊙O的切线,AC是⊙O的割线,
∴AF2=AP•AC,∴AF==2,∴AB=AF=2,∵AC=6,
∴BC==2,∴AO==3,∵△ABO∽△AOE,
∴,∴=,∴AE=.
4.(湖北十堰中考 第22题 8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7. 5.在⊙O中,AB为直径,C为⊙O上一点.(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(2)如图②,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.22.解:(1)连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°.(2分)∵OA=OC,∴∠OCA=∠CAB=27°,∴∠COB=2∠CAB=54°.在Rt△COP中,∠P+∠COP=90°,∴∠P=90°-∠COP=36°;(5分)(2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°.(6分)在Rt△AOE中,由∠EAO=10°,得∠AOE=90°-∠EAO=80°,∴∠ACD=∠AOD=40°.(8分)∵∠ACD是△ACP的一个外角,∴∠P=∠ACD-∠A=40°-10°=30°.(10分) 6.(鄂州中考 第22题 10分)如图,PA是⊙O的切线,切点为A, AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB= , BC =1,求PO的长. 【解析】(1)证明:连结OB∵AC为⊙O的直径 ∴∠ABC=90o又∵AB⊥PO ∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC而OB=OC ∴∠OBC=∠C ∴∠AOP=∠POB在△AOP和△BOP中 ∴△AOP≌△BOP ∴∠OBP=∠OAP∵PA为⊙O的切线 ∴∠OAP=90o ∴∠OBP=90o∴PB是⊙O的切线 …………3′ 8.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,求∠DOR的度数。【考点】三角形的外接圆与外心;等边三角形的性质;正方形的性质.【分析】根据等边三角形和正方形的性质,求得中心角∠POR和∠POD,二者的差就是所求.【解答】解:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,∵四边形ABCD是⊙O的内接正方形,∴∠AOD=90°,∴∠DOP=×90°=45°,∴∠AOQ=∠POR﹣∠DOP=75°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.(遂宁中考 第24题 10分)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.【解答】解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x=(负值舍去),∴OC=3x=,∴⊙O的半径OC为;(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°∴CF是⊙O的切线.9.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.【解析】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°,∴BC是⊙O的切线;(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD.又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ABC=×90°=30°,∴∠A=30°,∴AC=2CB=4,∴由勾股定理求得AB==2,∴⊙O的半径为,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=-. 10.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.【考点】切线的判定;等边三角形的性质.【分析】(1)连接OD,根据等边三角形的性质求出∠ODE=90°,根据切线的判定定理证明即可;(2)连接AD,BF,根据等边三角形的性质求出DC、CF,根据直角三角形的性质求出EC,结合图形计算即可.【解析】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴,.∵∠EDC=30°,∴.∴FE=FC﹣EC=1. 【点评】本题考查的是切线的判定、等边三角形的性质以及直角三角形的性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.
相关试卷
这是一份中考数学二轮专项复习——函数综合问题(含答案),共16页。
这是一份中考数学二轮专项复习——反比例函数综合问题(含答案),共20页。试卷主要包含了反比例函数的概念,反比例函数的图象和性质,解答题等内容,欢迎下载使用。
这是一份中考数学二轮专题复习专题10 圆的综合问题(教师版),共143页。试卷主要包含了非动态问题,动点问题,动圆问题,圆的图形变换问题等内容,欢迎下载使用。