2021-2023三年浙江省绍兴市中考数学真题分类汇编-02填空题知识点分类(含答案)
展开浙江省绍兴市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
一.因式分解-提公因式法(共2小题)
1.(2023•绍兴)因式分解:m2﹣3m= .
2.(2022•绍兴)分解因式:x2+x= .
二.因式分解-运用公式法(共1小题)
3.(2021•绍兴)分解因式:x2+2x+1= .
三.一元一次方程的应用(共1小题)
4.(2022•绍兴)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是 .
四.二元一次方程组的应用(共1小题)
5.(2021•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 两.
五.解分式方程(共1小题)
6.(2023•绍兴)方程的解是 .
六.解一元一次不等式(共1小题)
7.(2022•绍兴)关于x的不等式3x﹣2>x的解集是 .
七.反比例函数系数k的几何意义(共2小题)
8.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是 .
9.(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是 .
八.反比例函数图象上点的坐标特征(共1小题)
10.(2021•绍兴)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标(,2).反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是 .
九.二次函数的最值(共1小题)
11.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b= .
一十.全等三角形的判定与性质(共1小题)
12.(2021•绍兴)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为 .
一十一.等腰三角形的性质(共1小题)
13.(2021•绍兴)如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是 .
一十二.菱形的性质(共1小题)
14.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是 .
一十三.矩形的性质(共1小题)
15.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若AB=30cm,则BC长为 cm(结果保留根号).
一十四.圆内接四边形的性质(共1小题)
16.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是 .
一十五.作图—基本作图(共1小题)
17.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是 .
一十六.相似三角形的判定与性质(共1小题)
18.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是 .
浙江省绍兴市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
参考答案与试题解析
一.因式分解-提公因式法(共2小题)
1.(2023•绍兴)因式分解:m2﹣3m= m(m﹣3) .
【答案】m(m﹣3).
【解答】解:m2﹣3m=m(m﹣3).
故答案为:m(m﹣3).
2.(2022•绍兴)分解因式:x2+x= x(x+1) .
【答案】x(x+1).
【解答】解:x2+x=x(x+1).
故答案为:x(x+1).
二.因式分解-运用公式法(共1小题)
3.(2021•绍兴)分解因式:x2+2x+1= (x+1)2 .
【答案】见试题解答内容
【解答】解:x2+2x+1=(x+1)2.
故答案为:(x+1)2.
三.一元一次方程的应用(共1小题)
4.(2022•绍兴)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是 20 .
【答案】20.
【解答】解:设良马x天追上劣马,
根据题意得:240x=150(x+12),
解得x=20,
答:良马20天追上劣马;
故答案为:20.
四.二元一次方程组的应用(共1小题)
5.(2021•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两.
【答案】46.
【解答】解:设有x人,银子y两,
由题意得:,解得,
故答案为46.
五.解分式方程(共1小题)
6.(2023•绍兴)方程的解是 x=3 .
【答案】x=3.
【解答】解:去分母,得3x=9,
∴x=3.
经检验,x=3是原方程的解.
故答案为:x=3.
六.解一元一次不等式(共1小题)
7.(2022•绍兴)关于x的不等式3x﹣2>x的解集是 x>1 .
【答案】x>1.
【解答】解:∵3x﹣2>x,
∴3x﹣x>2,即2x>2,
解得x>1,
故答案为:x>1.
七.反比例函数系数k的几何意义(共2小题)
8.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是 2 .
【答案】2.
【解答】解:长CA交y轴于E,延长CB交x轴于点F,
∴CE⊥y轴,CF⊥x轴,
∴四边形OECF为矩形,
∵x2=2x1,
∴点A为CE中点,
由几何意义得,S△OAE=S△OBF,
∴点B为CF中点,
∴S△OAB=S矩形=6,
∴S矩形=16,
∴S△ABC=×16=2.
故答案为:2.
2
9.(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是 6 .
【答案】6.
【解答】解:过点F作FG⊥x轴于点G,FH⊥y轴于点H,过点D作DQ⊥x轴于点Q,如图所示,
根据题意可知,AC=OE=BD,
设AC=OE=BD=a,
∴四边形ACEO的面积为4a,
∵F为DE的中点,FG⊥x轴,DQ⊥x轴,
∴FG为△EDQ的中位线,
∴FG=DQ=2,EG=EQ=,
∴四边形HFGO的面积为2(a+),
∴k=4a=2(a+),
解得:a=,
∴k=6.
故答案为:6.
八.反比例函数图象上点的坐标特征(共1小题)
10.(2021•绍兴)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标(,2).反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是 5或22.5 .
【答案】5或22.5.
【解答】解:作DM⊥x轴于M,BN⊥x轴于N,过C点作x轴的平行线,交MD的延长线于E,交NB的延长线于F,
正方形ABCD中,∠BAD=90°,
∴∠DAM+∠BAN=90°,
∵∠ADM+∠DAM=90°,
∴∠ADM=∠BAN,
在△ADM和△BAN中,
,
∴△ADM≌△BAN(AAS),
∴AM=BN,DM=AN,
∵顶点D的坐标(,2).
∴OM=,DM=2,
同理:△ADM≌△DCE,
∴AM=DE,CE=DM,
∴AM=BN=DE,DM=AN=CE=2,
设AM=BN=DE=m,
∴ON=+m+2=4.5+m,
∴B(4.5+m,m),C(4.5,2+m),
当反比例函数y=(常数k>0,x>0)的图象经过点B、D时,则k=×2=5;
当反比例函数y=(常数k>0,x>0)的图象经过点B、C时,则k=(4.5+m)•m=4.5•(2+m),
解得m=3(负数已经舍去),
∴k=4.5×(2+3)=22.5,
故答案为5或22.5.
九.二次函数的最值(共1小题)
11.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b= 或﹣ .
【答案】或﹣.
【解答】解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,
∴C(0,4),
∵A(3,0),四边形ABCO是矩形,
∴B(3,4),
①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=x2+bx+c(0≤x≤3)得
,
解得b=;
②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=x2+bx+c(0≤x≤3)得
,
解得b=﹣,
综上所述,b=或b=﹣,
故答案为:或﹣,
一十.全等三角形的判定与性质(共1小题)
12.(2021•绍兴)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为 2±2或4或2 .
【答案】2±2或4或2.
【解答】解:如图,当C,D同侧时,过点A作AE⊥CD于E.
在Rt△AEB中,∠AEB=90°,AB=4,∠ABE=30°,
∴AE=AB=2,
∵AD=AC=2,
∴DE==2,EC==2,
∴DE=EC=AE,
∴△ADC是等腰直角三角形,
∴CD=4,
当C,D异侧时,过C′作C′H⊥CD于H,
∵△BCC′是等边三角形,BC=BE﹣EC=2﹣2,
∴CH=BH=﹣1,C′H=CH=3﹣,
在Rt△DC′H中,DC′===2,
∵△DBD′是等边三角形,
∴DD′=2+2,
∴CD的长为2±2或4或2.
故答案为:2±2或4或2.
一十一.等腰三角形的性质(共1小题)
13.(2021•绍兴)如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是 15°或75° .
【答案】15°或75°.
【解答】解:如右图所示,
当点P在点B的左侧时,
∵AB=AC,∠ABC=70°,
∴∠ACB=∠ABC=70°,
∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣70°﹣70°=40°,
∵CA=CP1,
∴∠CAP1=∠CP1A===55°,
∴∠BAP1=∠CAP1﹣∠CAB=55°﹣40°=15°;
当点P在点C的右侧时,
∵AB=AC,∠ABC=70°,
∴∠ACB=∠ABC=70°,
∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣70°﹣70°=40°,
∵CA=CP2,
∴∠CAP2=∠CP2A===35°,
∴∠BAP2=∠CAP2+∠CAB=35°+40°=75°;
由上可得,∠BAP的度数是15°或75°,
故答案为:15°或75°.
一十二.菱形的性质(共1小题)
14.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是 10°或80° .
【答案】10°或80°.
【解答】解:以点A为圆心,AC长为半径作弧,交直线AD于点E和E′,如图所示,
在菱形ABCD中,∠DAC=∠BAC,
∵∠DAB=40°,
∴∠DAC=20°,
∵AC=AE,
∴∠AEC=(180°﹣20°)÷2=80°,
∵AE′=AC,
∴∠AE′C=∠ACE′=10°,
综上所述,∠AEC的度数是10°或80°,
故答案为:10°或80°.
一十三.矩形的性质(共1小题)
15.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若AB=30cm,则BC长为 cm(结果保留根号).
【答案】.
【解答】解:过O点作OE⊥CD,OF⊥AD,垂足分别为E,F,
由题意知∠FOD=2∠DOE,
∵∠FOD+∠DOE=90°,
∴∠DOE=30°,∠FOD=60°,
在矩形ABCD中,∠C=90°,CD=AB=30cm,
∴OE∥BC,
∴∠DBC=∠DOE=30°,
∴BC=CD=cm,
故答案为.
一十四.圆内接四边形的性质(共1小题)
16.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是 80° .
【答案】80°.
【解答】解:∵四边形ABCD内接于圆O,
∴∠B+∠D=180°,
∵∠D=100°,
∴∠B=80°.
故答案为:80°.
一十五.作图—基本作图(共1小题)
17.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是 10°或100° .
【答案】10°或100°.
【解答】解:如图,点D即为所求;
在△ABC中,∠ABC=40°,∠BAC=80°,
∴∠ACB=180°﹣40°﹣80°=60°,
由作图可知:AC=AD,
∴∠ACD=∠ADC=×(180°﹣80°)=50°,
∴∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;
由作图可知:AC=AD′,
∴∠ACD′=∠AD′C,
∵∠ACD′+∠AD′C=∠BAC=80°,
∴∠AD′C=40°,
∴∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.
综上所述:∠BCD的度数是10°或100°.
故答案为:10°或100°.
一十六.相似三角形的判定与性质(共1小题)
18.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是 或5 .
【答案】或5.
【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.
∵tan∠CBT=3=,
∴可以假设BT=k,CT=3k,
∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,
∴∠CAT=∠JCD,
在△ATC和△CJD中,
,
∴△ATC≌△CJD(AAS),
∴DJ=CT=3k,AT=CJ=10+k,
∵∠CJD=∠CED=90°,
∴C,E,D,J四点共圆,
∵EC=DE,
∴∠CJE=∠DJE=45°,
∴ET=TJ=10﹣2k,
∵CE2=CT2+TE2=(CD)2,
∴(3k)2+(10﹣2k)2=[•]2,
整理得4k2﹣25k+25=0,
∴(k﹣5)(4k﹣5)=0,
∴k=5或,
∴BE=BT+ET=k+10﹣2k=10﹣k=或5,
故答案为:或5.
河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类: 这是一份河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共16页。
广东省2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案): 这是一份广东省2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案),共10页。试卷主要包含了因式分解,计算,的函数表达式为等内容,欢迎下载使用。
福建省2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案): 这是一份福建省2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案),共15页。试卷主要包含了,则k的值等于 ,如图,AD是△ABC的角平分线等内容,欢迎下载使用。