2021-2023三年浙江省温州市中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
展开浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.分式的加减法(共1小题)
1.(2023•温州)计算:
(1)|﹣1|++()﹣2﹣(﹣4);
(2)﹣.
二.待定系数法求一次函数解析式(共1小题)
2.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).
(1)求m的值和直线AB的函数表达式;
(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.
三.一次函数的应用(共1小题)
3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
营养品信息表
营养成分
每千克含铁42毫克
配料表
原料
每千克含铁
甲食材
50毫克
乙食材
10毫克
规格
每包食材含量
每包单价
A包装
1千克
45元
B包装
0.25千克
12元
(1)问甲、乙两种食材每千克进价分别是多少元?
(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
①问每日购进甲、乙两种食材各多少千克?
②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?
四.待定系数法求二次函数解析式(共1小题)
4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).
(1)求抛物线的函数表达式和顶点坐标.
(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.
五.二次函数的应用(共1小题)
5.(2022•温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3
拟定设计方案
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
六.平行四边形的判定与性质(共2小题)
6.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.
(1)求证:四边形DEFG是平行四边形.
(2)当AD=5,tan∠EDC=时,求FG的长.
7.(2021•温州)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°.
(1)求证:四边形AECF是平行四边形;
(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时,求BD的长.
七.圆的综合题(共2小题)
8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.
①当△PQR为直角三角形时,求x的值.
②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.
9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A(2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.
(1)求⊙M的半径和直线CM的函数表达式;
(2)求点D,E的坐标;
(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.
八.利用平移设计图案(共1小题)
10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.
(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
九.作图-旋转变换(共1小题)
11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;
(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.
一十.相似形综合题(共1小题)
12.(2023•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=,AC=1.如图2,连结AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P作PH⊥AB于点H.设PH=x,MN=y.
(1)求CE的长和y关于x的函数表达式;
(2)当PH<PN,且长度分别等于PH,PN,a的三条线段组成的三角形与△BCE相似时,求a的值;
(3)延长PN交半圆O于点Q,当NQ=x﹣3时,求MN的长.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•温州)根据背景素材,探索解决问题.
测算发射塔的高度
背景素材
某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN(如图1),他们通过自制的测倾仪(如图2)在A,B,C三个位置观测,测倾仪上的示数如图3所示.
经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度
问题解决
任务1
分析规划
选择两个观测位置:点 和点 .
获取数据
写出所选位置观测角的正切值,并量出观测点之间的图上距离.
任务2
推理计算
计算发射塔的图上高度MN.
任务3
换算高度
楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.
注:测量时,以答题纸上的图上距离为准,并精确到1mm.
浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.分式的加减法(共1小题)
1.(2023•温州)计算:
(1)|﹣1|++()﹣2﹣(﹣4);
(2)﹣.
【答案】(1)12;
(2)a﹣1.
【解答】解:(1)原式=1﹣2+9+4
=12;
(2)原式=
=
=a﹣1.
二.待定系数法求一次函数解析式(共1小题)
2.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).
(1)求m的值和直线AB的函数表达式;
(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.
【答案】(1)m=;直线AB的函数表达式为y=﹣x+3.
(2)当t=0,y1﹣y2的最大值为.
【解答】解:(1)把点A(2,m)代入y=2x﹣中,得m=;
设直线AB的函数表达式为:y=kx+b,把A(2,),B(0,3)代入得:
,解得,
∴直线AB的函数表达式为y=﹣x+3.
(2)∵点P(t,y1)在线段AB上,
∴y1=﹣t+3(0≤t≤2),
∵点Q(t﹣1,y2)在直线y=2x﹣上,
∴y2=2(t﹣1)﹣=2t﹣,
∴y1﹣y2=﹣t+3﹣(2t﹣)=﹣t+,
∵﹣<0,
∴y1﹣y2随t的增大而减小,
∴当t=0,y1﹣y2的最大值为.
三.一次函数的应用(共1小题)
3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
营养品信息表
营养成分
每千克含铁42毫克
配料表
原料
每千克含铁
甲食材
50毫克
乙食材
10毫克
规格
每包食材含量
每包单价
A包装
1千克
45元
B包装
0.25千克
12元
(1)问甲、乙两种食材每千克进价分别是多少元?
(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
①问每日购进甲、乙两种食材各多少千克?
②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?
【答案】(1)甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A为400包时,总利润最大,最大总利润为2800元.
【解答】解:(1)设乙食材每千克进价为a元,则甲食材每千克进价为2a元,
由题意得,
解得a=20,
经检验,a=20是所列方程的根,且符合题意,
∴2a=40(元),
答:甲食材每千克进价为40元,乙食材每千克进价为20元;
(2)①设每日购进甲食材x千克,乙食材y千克,
由题意得,解得,
答:每日购进甲食材400千克,乙食材100千克;
②设A为m包,则B为=(2000﹣4m)包,
∵A的数量不低于B的数量,
∴m≥2000﹣4m,
∴m≥400,
设总利润为W元,根据题意得:
W=45m+12(2000﹣4m)﹣18000﹣2000=﹣3m+4000,
∵k=﹣3<0,
∴W随m的增大而减小,
∴当m=400时,W的最大值为2800,
答:当A为400包时,总利润最大,最大总利润为2800元.
四.待定系数法求二次函数解析式(共1小题)
4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).
(1)求抛物线的函数表达式和顶点坐标.
(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.
【答案】(1)y=x2﹣2x﹣8;(1,﹣9).
(2)﹣4<xP<5,﹣9≤yP<16.
【解答】解:(1)把(﹣2,0)代入y=ax2﹣2ax﹣8得0=4a+4a﹣8,
解得a=1,
∴抛物线的函数表达式为y=x2﹣2x﹣8,
∵y=x2﹣2x﹣8=(x﹣1)2﹣9,
∴抛物线顶点坐标为(1,﹣9).
(2)把x=﹣4代入y=x2﹣2x﹣8得y=(﹣4)2﹣2×(﹣4)﹣8=16,
∴m=16,
把y=7代入函数解析式得7=x2﹣2x﹣8,
解得x=5或x=﹣3,
∴n=5或n=﹣3,
∵n为正数,
∴n=5,
∴点A坐标为(﹣4,16),点B坐标为(5,7).
∵抛物线开口向上,顶点坐标为(1,﹣9),
∴抛物线顶点在AB下方,
∴﹣4<xP<5,﹣9≤yP<16.
五.二次函数的应用(共1小题)
5.(2022•温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3
拟定设计方案
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
【答案】任务1:y=﹣x2;
任务2:﹣1.8m,﹣6≤x≤6;
任务3:挂7盏或8盏,横坐标分别为﹣4.8和﹣5.6,方案见解答.
【解答】解:任务1:
以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B(10,﹣5),
设抛物线的解析式为:y=ax2,
把点B(10,﹣5)代入得:100a=﹣5,
∴a=﹣,
∴抛物线的函数表达式为:y=﹣x2;
任务2:
∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,
∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,
即悬挂点的纵坐标的最小值是﹣1.8m,
当y=﹣1.8时,﹣x2=﹣1.8,
∴x=±6,
∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;
任务3:
方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,
∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,
∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,
若顶点一侧悬挂3盏灯笼时,1.6×3<6,
∴顶点一侧最多悬挂3盏灯笼,
∵灯笼挂满后成轴对称分布,
∴共可挂7盏灯笼,
∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;
方案二:如图3,
∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,
若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,
∴顶点一侧最多悬挂4盏灯笼,
∵灯笼挂满后成轴对称分布,
∴共可挂8盏灯笼,
∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣5.6.
六.平行四边形的判定与性质(共2小题)
6.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.
(1)求证:四边形DEFG是平行四边形.
(2)当AD=5,tan∠EDC=时,求FG的长.
【答案】(1)证明见解析;
(2),
【解答】(1)证明:∵E,F分别是AC,AB的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠EFO=∠GDO,
∵O是DF的中点,
∴OF=OD,
在△OEF和△OGD中,
,
∴△OEF≌△OGD(ASA),
∴EF=GD,
∴四边形DEFG是平行四边形.
(2)解:∵AD⊥BC,
∴∠ADC=90°,
∵E是AC的中点,
∴DE=AC=CE,
∴∠C=∠EDC,
∴tanC==tan∠EDC=,
即=,
∴CD=2,
∴AC===,
∴DE=AC=,
由(1)可知,四边形DEFG是平行四边形,
∴FG=DE=.
7.(2021•温州)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°.
(1)求证:四边形AECF是平行四边形;
(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时,求BD的长.
【答案】见试题解答内容
【解答】(1)证明:∵∠AEB=∠CFD=90°,
∴AE⊥BD,CF⊥BD,
∴AE∥CF,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS),
∴AE=CF,
∴四边形AECF是平行四边形;
(2)解:在Rt△ABE中,tan∠ABE==,
设AE=3a,则BE=4a,
由勾股定理得:(3a)2+(4a)2=52,
解得:a=1或a=﹣1(舍去),
∴AE=3,BE=4,
由(1)得:四边形AECF是平行四边形,
∴∠EAF=∠ECF,CF=AE=3,
∵∠CBE=∠EAF,
∴∠ECF=∠CBE,
∴tan∠CBE=tan∠ECF,
∴=,
∴CF2=EF×BF,
设EF=x,则BF=x+4,
∴32=x(x+4),
解得:x=﹣2或x=﹣﹣2,(舍去),
即EF=﹣2,
由(1)得:△ABE≌△CDF,
∴BE=DF=4,
∴BD=BE+EF+DF=4+﹣2+4=6+.
七.圆的综合题(共2小题)
8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.
(1)求半圆O的半径.
(2)求y关于x的函数表达式.
(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.
①当△PQR为直角三角形时,求x的值.
②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.
【答案】(1);
(2)y=;
(3)①或;
②.
【解答】解:(1)如图1,连接OD,设半径为r,
∵CD切半圆于点D,
∴OD⊥CD,
∵BE⊥CD,
∴OD∥BE,
∴△COD∽△CBE,
∴,
∴,
解得r=,
∴半圆O的半径为;
(2)由(1)得,CA=CB﹣AB=5﹣2×=,
∵=,BQ=x,
∴AP=,
∴CP=AP+AC,
∴y=;
(3)①显然∠PRQ<90°,所以分两种情形,
当∠RPQ=90°时,则四边形RPQE是矩形,
∴PR=QE,
∵PR=PC×sinC=,
∴,
∴x=,
当∠PQR=90°时,过点P作PH⊥BE于点H,如图,
则四边形PHER是矩形,
∴PH=RE,EH=PR,
∵CR=CP•cosC=,
∴PH=RE=3﹣x=EQ,
∴∠EQR=∠ERQ=45°,
∴∠PQH=45°=∠QPH,
∴HQ=HP=3﹣x,
由EH=PR得:(3﹣x)+(3﹣x)=,
∴x=,
综上,x的值为或;
②如图,连接AF,QF',由对称可知QF=QF',
∵CP=,
∴CR=x+1,
∴ER=3﹣x,
∵BQ=x,
∴EQ=3﹣x,
∴ER=EQ,
∴∠F'QR=∠EQR=45°,
∴∠BQF'=90°,
∴QF=QF'=BQ•tanB=,
∵AB是半圆O的直径,
∴∠AFB=90°,
∴BF=AB•cosB=,
∴,
∴x=,
∴.
9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A(2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.
(1)求⊙M的半径和直线CM的函数表达式;
(2)求点D,E的坐标;
(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.
【答案】见试题解答内容
【解答】解:(1)∵∠AOB=90°,
∴AB为⊙M的直径,
∵点M是AB的中点,则点M(1,4),
则圆的半径为AM==,
设直线CM的表达式为y=kx+b,则,解得,
故直线CM的表达式为y=﹣x+;
(2)设点D的坐标为(x,﹣x+),
由AM=得:(x﹣1)2+(﹣x+﹣4)2=()2,
解得x=5或﹣3,
故点D、E的坐标分别为(﹣3,5)、(5,3);
(3)过点D作DH⊥OB于点H,则DH=3,BH=8﹣5=3=DH,
故∠DBO=45°,
由点A、E的坐标,同理可得∠EAP=45°;
由点A、E、B、D的坐标得,AE==3,
同理可得:BD=3,OB=8,
①当∠AEP=∠DBO=45°时,
则△AEP为等腰直角三角形,EP⊥AC,
故点P的坐标为(5,0),
故OP=5;
②∠AEP=∠BDO时,
∵∠EAP=∠DBO,
∴△EAP∽△DBO,
∴,即==,解得AP=8,
故PO=10;
③∠AEP=∠BOD时,
∵∠EAP=∠DBO,
∴△EAP∽△OBD,
∴,即,解得AP=,
则PO=2+=,
综上所述,OP为5或10或.
八.利用平移设计图案(共1小题)
10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.
(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
【答案】见试题解答内容
【解答】解:(1)如图2所示,即为所求;
(2)如图3所示,即为所求.
九.作图-旋转变换(共1小题)
11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;
(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.
【答案】(1)(2)作图见解析部分.
【解答】解:(1)图形如图1所示(答案不唯一);
(2)图形如图2所示(答案不唯一).
一十.相似形综合题(共1小题)
12.(2023•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=,AC=1.如图2,连结AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P作PH⊥AB于点H.设PH=x,MN=y.
(1)求CE的长和y关于x的函数表达式;
(2)当PH<PN,且长度分别等于PH,PN,a的三条线段组成的三角形与△BCE相似时,求a的值;
(3)延长PN交半圆O于点Q,当NQ=x﹣3时,求MN的长.
【答案】(1)CE=,y=﹣x+4;
(2)a的值为或或;
(3)MN的长为.
【解答】解:(1)如图1,连接OD,
∵CD切半圆O于点D,
∴OD⊥CE,
∵OA=,AC=1,
∴OC=,BC=4,
∴CD==2,
∵BE⊥CE,
∴OD∥BE,
∴,
∴,
∴CE=,
如图2,∵∠AFB=∠E=90°,
∴AF∥CE,
∴MN∥CB,
∴四边形APMC是平行四边形,
∴CM=PA====x,
∵NM∥BC,
∴△BCE∽△NME,
∴,
∴=,
∴y=﹣x+4;
(2)∵PN=y﹣1=﹣x+4﹣1=﹣x+3,PH<PN,△BCE的三边之比为3:4:5,
∴可分为三种情况,
当PH:PN=3:5时,x=﹣x+3,解得:x=,
∴a=x=,
当PH:PN=4:5时,x=﹣x+3,解得:x=,
∴a=x=,
当PH:PN=3:4时,x=﹣x+3,解得:x=,
∴a=x=,
综上所述:a的值为或或;
(3)如图3,连接AQ,BQ,过点Q作QG⊥AB于点G,
则∠AQB=∠AGQ=90°,PH=QG=x,
∴∠QAB=∠BQG,
∵NQ=x﹣3,PN=y﹣1=﹣x+3,
∴HG=PQ=NQ+PN=x,
∵AH=x,
∴AG=AH+HG=3x,
∴tan∠BQG=tan∠QAB===,
∴BG=QG=x,
∴AB=AG+BG=x=3,
∴x=,
∴y=﹣x+4=,
∴MN的长为.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•温州)根据背景素材,探索解决问题.
测算发射塔的高度
背景素材
某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN(如图1),他们通过自制的测倾仪(如图2)在A,B,C三个位置观测,测倾仪上的示数如图3所示.
经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度
问题解决
任务1
分析规划
选择两个观测位置:点 A 和点 B(答案不唯一) .
获取数据
写出所选位置观测角的正切值,并量出观测点之间的图上距离.
任务2
推理计算
计算发射塔的图上高度MN.
任务3
换算高度
楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.
注:测量时,以答题纸上的图上距离为准,并精确到1mm.
【答案】任务1:A、B;tan∠1=,tan∠2=,tan∠3=,测得图上AB=4mm,
任务2:MN=18mm;
任务3:43.2m.
【解答】解:任务1:【分析规划】选择点A和点B(答案不唯一),
故答案为:A、B(答案不唯一);
【获取数据】tan∠1=,tan∠2=,tan∠3=,测得图上AB=4mm;
任务2:如图1,过点A作AF⊥MN于点F,过点B作BG⊥MN于点G,则FG=AB=4mm,
设MF=xmm,则MG=(x+4)mm,
∵tan∠MAF==,
tan∠MBG==,
∴AF=4x,BG=3x+12,
∵AF=BG,即4x=3x+12,
∴x=12,即MF=12mm,
∴AF=BG=4x=48(mm),
∵tan∠FAN==,
∴FN=6mm,
∴MN=MF+FN=12+6=18(mm),
任务3:测得图上DE=5mm,设发射塔的实际高度为hm,由题意得,
=,
解得h=43.2(m),
∴发射塔的实际高度为43.2m.
陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。
浙江省绍兴市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份浙江省绍兴市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共28页。试卷主要包含了的函数关系图象,的关系如图,问题等内容,欢迎下载使用。