2023年湖南省各市中考数学试题真题汇编——函数B(含答案)
展开
这是一份2023年湖南省各市中考数学试题真题汇编——函数B(含答案),共45页。试卷主要包含了所在象限是第 象限等内容,欢迎下载使用。
函数B(真题汇编)2023年湖南省各市中考数学试题全解析版
一.选择题(共8小题);
1.(2023•邵阳)如图,矩形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(k≠0)的图象上,点B的坐标为(2,4),则点E的坐标为( )
A.(4,4) B.(2,2) C.(2,4) D.(4,2)
2.(2023•株洲)如图所示,直线l为二次函数y=ax2+bx+c(a≠0)的图象的对称轴,则下列说法正确的是( )
A.b恒大于0 B.a,b同号
C.a.b异号 D.以上说法都不对
3.(2023•怀化)已知压力F(N)、压强P(Pa)与受力面积S(m2)之间有如下关系式:F=PS.当F为定值时,如图中大致表示压强P与受力面积S之间函数关系的是( )
A. B.
C. D.
4.(2023•邵阳)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=﹣2;②点(0,3)在抛物线上;③若x1>x2>﹣2,则y1>y2;④若y1=y2,则x1+x2=﹣2,其中,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
5.(2023•衡阳)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
A.x3<x1<x2<x4 B.x1<x3<x4<x2
C.x1<x2<x3<x4 D.x3<x4<x1<x2
6.(2023•永州)已知点M(2,a)在反比例函数的图象上,其中a,k为常数,且k>0,则点M一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.(2023•株洲)下列哪个点在反比例函数的图象上?( )
A.P1(1,﹣4) B.P2(4,﹣1) C.P3(2,4) D.
8.(2023•怀化)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A、B两点.已知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABC=9,那么点C的坐标为( )
A.(﹣3,0) B.(5,0)
C.(﹣3,0)或(5,0) D.(3,0)或(﹣5,0)
二.填空题(共4小题)
9.(2023•衡阳)在平面直角坐标系中,点P(﹣3,﹣2)所在象限是第 象限.
10.(2023•娄底)函数y=的自变量x的取值范围是 .
11.(2023•长沙)如图,在平面直角坐标系中,点A在反比例函数y=(k为常数,k>0,x>0)的图象上,过点A作x轴的垂线,垂足为B,连接OA.若△OAB的面积为,则k= .
12.(2023•郴州)在一次函数y=(k﹣2)x+3中,y随x的增大而增大,则k的值可以是 (任写一个符合条件的数即可).
三.解答题(共12小题)
13.(2023•郴州)在实验课上,小明做了一个试验.如图,在仪器左边托盘A(固定)中放置一个物体,在右边托盘B(可左右移动)中放置一个可以装水的容器,容器的质量为5g.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘B与点C的距离x(cm)(0<x≤60),记录容器中加入的水的质量,得到下表:
托盘B与点C的距离x/cm
30
25
20
15
10
容器与水的总质量y1/g
10
12
15
20
30
加入的水的质量y2/g
5
7
10
15
25
把上表中的x与y1各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的y1关于x的函数图象.
(1)请在该平面直角坐标系中作出y2关于x的函数图象;
(2)观察函数图象,并结合表中的数据:
①猜测y1与x之间的函数关系,并求y1关于x的函数表达式;
②求y2关于x的函数表达式;
③当0<x≤60时,y1随x的增大而 (填“增大”或“减小”),y2随x的增大而 (填“增大”或“减小”),y2的图象可以由y1的图象向 (以“上”或“下”或“左”或“右”)平移得到.
(3)若在容器中加入的水的质量y2(g)满足19≤y2≤45,求托盘B与点C的距离x(cm)的取值范围.
14.(2023•衡阳)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象相交于点A.
(1)求点A的坐标.
(2)分别以点O、A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点B和点C,作直线BC,交x轴于点D.求线段OD的长.
15.(2023•永州)小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量筒中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表的一组数据:
时间t
(单位:分钟)
1
2
3
4
5
…
总水量y
(单位:毫升)
7
12
17
22
27
…
(1)探究:根据上表中的数据,请判断和y=kt+b(k,b为常数)哪一个能正确反映总水量y与时间t的函数关系?并求出y关于t的表达式;
(2)应用:
①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?
②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.
16.(2023•株洲)如图所示,在平面直角坐标系Oxy中,四边形OABC为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点A(t,0),点P(1,2)在函数 的图象上.
(1)求k的值;
(2)连接BP、CP,记△BCP的面积为S,设T=2S﹣2t2,求T的最大值.
17.(2023•株洲)某花店每天购进16支某种花,然后出售,如果当天售不完,那么剩下的这种花进行作废处理.该花店记录了10天该种花的日需求量(n为正整数,单位:支),统计如下表:
日需求量n
13
14
15
16
17
18
天数
1
1
2
4
1
1
(1)求该花店在这10天中出现该种花作废处理情形的天数;
(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n﹣80;当n≥16时,日利润为80元.
①当n=14时,问该花店这天的利润为多少元?
②求该花店这10天中日利润为70元的日需求量的频率.
18.(2023•郴州)已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求的值;
(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=?若存在,求出点Q的坐标;若不存在,请说明理由.
19.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).
(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;
(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.
①求证:.
②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.
20.(2023•岳阳)已知抛物线Q1:y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点,交y轴于点C(0,3).
(1)请求出抛物线Q1的表达式.
(2)如图1,在y轴上有一点D(0,﹣1),点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.
(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.
21.(2023•衡阳)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,连接AC,过B、C两点作直线.
(1)求a的值.
(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.
(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.
22.(2023•怀化)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式及顶点坐标;
(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;
(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.
23.(2023•永州)如图1,抛物线y=ax2+bx+c(a,b,c为常数)经过点F(0,5),
顶点坐标为(2,9),点P(x1,y1)为抛物线上的动点,PH⊥x轴于H,且.
(1)求抛物线的表达式;
(2)如图1,直线OP:交BF于点G,求的最大值;
(3)如图2,四边形OBMF为正方形,PA交y轴于点E,BC交FM的延长线于C,且BC⊥BE,PH=FC,求点P的横坐标.
24.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.
(1)求抛物线的解析式.
(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.
(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.
函数B(真题汇编)2023年湖南省各市中考数学试题全解析版
参考答案与试题解析
一.选择题(共8小题)
1.(2023•邵阳)如图,矩形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(k≠0)的图象上,点B的坐标为(2,4),则点E的坐标为( )
A.(4,4) B.(2,2) C.(2,4) D.(4,2)
【答案】D
【解答】解:∵点B的坐标为(2,4)在反比例函数y=上,
∴4=.
∴k=8.
∴反比例函数的解析式为y=.
∵点E在反比例函数上,
∴可设(a,).
∴AD=a﹣2=ED=.
∴a1=4,a2=﹣2.
∵a>0,
∴a=4.
∴E(4,2).
故选:D.
2.(2023•株洲)如图所示,直线l为二次函数y=ax2+bx+c(a≠0)的图象的对称轴,则下列说法正确的是( )
A.b恒大于0 B.a,b同号
C.a.b异号 D.以上说法都不对
【答案】C
【解答】解:∵直线l为二次函数 y=ax2+bx+c(a≠0)的图象的对称轴,
∴对称轴为直线,
当a<0时,则b>0,
当a>0时,则b<0,
∴a,b异号,
故选:C.
3.(2023•怀化)已知压力F(N)、压强P(Pa)与受力面积S(m2)之间有如下关系式:F=PS.当F为定值时,如图中大致表示压强P与受力面积S之间函数关系的是( )
A. B.
C. D.
【答案】D
【解答】解:∵压力F(N)、压强P(Pa)与受力面积S(m2)之间有如下关系式:F=PS.
∴当F为定值时,压强P与受力面积S之间函数关系是反比例函数,
故选:D.
4.(2023•邵阳)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=﹣2;②点(0,3)在抛物线上;③若x1>x2>﹣2,则y1>y2;④若y1=y2,则x1+x2=﹣2,其中,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【解答】解:∵抛物线y=ax2+4ax+3的对称轴为直线x=﹣=﹣2,
∴①正确;
当x=0时,y=3,则点点(0,3)在抛物线上,
∴②正确;
当a>0时,x1>x2>﹣2,则y1>y2;
当a<0时,x1>x2>﹣2,则y1<y2;
∴③错误;
当y1=y2,则x1+x2=﹣4,
∴④错误;
故正确的有2个,
故选:B.
5.(2023•衡阳)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
A.x3<x1<x2<x4 B.x1<x3<x4<x2
C.x1<x2<x3<x4 D.x3<x4<x1<x2
【答案】B
【解答】解:关于x的方程x2+2x﹣3﹣m=0的解为抛物线y=x2+2x﹣3与直线y=m的交点的横坐标,
关于x的方程x2+2x﹣3﹣n=0的解为抛物线y=x2+2x﹣3与直线y=n的交点的横坐标,
如图:
由图可知,x1<x3<x4<x2,
故选:B.
6.(2023•永州)已知点M(2,a)在反比例函数的图象上,其中a,k为常数,且k>0,则点M一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】A
【解答】解:∵点M(2,a)在反比例函数的图象上,
∴a=,
∴k>0,
∴a>0,
∴点M一定在第一象限.
故选:A.
方法二:
∵反比例函数中,k>0,
∴图象的两个分支在一、三象限,
∵点M(2,a)在反比例函数的图象上,
∴点M一定在第一象限.
故选:A.
7.(2023•株洲)下列哪个点在反比例函数的图象上?( )
A.P1(1,﹣4) B.P2(4,﹣1) C.P3(2,4) D.
【答案】D
【解答】解:A.∵1×(﹣4)=﹣4≠4,∴P1(1,﹣4)不在反比例函数的图象上,故选项不符合题意;
B.∵4×(﹣1)=﹣4≠4,∴P2(4,﹣1)不在反比例函数的图象上,故选项不符合题意;
C.∵2×4=8≠4,∴P3(2,4)不在反比例函数的图象上,故选项不符合题意;
D.∵,∴在反比例函数的图象上,故选项符合题意.
故选:D.
8.(2023•怀化)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A、B两点.已知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABC=9,那么点C的坐标为( )
A.(﹣3,0) B.(5,0)
C.(﹣3,0)或(5,0) D.(3,0)或(﹣5,0)
【答案】D
【解答】解:把点A(1,3)代入y=(k>0)得,3=,
∴k=3,
∴反比例函数为y=,
设直线AB为y=ax+b,
代入点D(﹣1,0),A(1,3)得,
解得,
∴直线AB为y=x+,
解,得或,
∴B(﹣2,﹣),
∵S△ABC=9,
∴S△ACD+S△BCD=,
∴CD=4,
∴点C的坐标为(﹣5,0)或(3,0).
故选:D.
二.填空题(共4小题)
9.(2023•衡阳)在平面直角坐标系中,点P(﹣3,﹣2)所在象限是第 三 象限.
【答案】三.
【解答】解:点P(﹣3,﹣2)在第三象限,
故答案为:三.
10.(2023•娄底)函数y=的自变量x的取值范围是 x≥﹣1 .
【答案】x≥﹣1.
【解答】解:由题意得:x+1≥0,
解得:x≥﹣1,
故答案为:x≥﹣1.
11.(2023•长沙)如图,在平面直角坐标系中,点A在反比例函数y=(k为常数,k>0,x>0)的图象上,过点A作x轴的垂线,垂足为B,连接OA.若△OAB的面积为,则k= .
【答案】.
【解答】解:△AOB的面积为=,
所以k=.
故答案为:.
12.(2023•郴州)在一次函数y=(k﹣2)x+3中,y随x的增大而增大,则k的值可以是 3(答案不唯一) (任写一个符合条件的数即可).
【答案】见试题解答内容
【解答】解:∵在一次函数y=(k﹣2)x+3的图象中,y随x的增大而增大,
∴k﹣2>0,
解得:k>2.
∴k值可以为3.
故答案为:3(答案不唯一).
三.解答题(共12小题)
13.(2023•郴州)在实验课上,小明做了一个试验.如图,在仪器左边托盘A(固定)中放置一个物体,在右边托盘B(可左右移动)中放置一个可以装水的容器,容器的质量为5g.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘B与点C的距离x(cm)(0<x≤60),记录容器中加入的水的质量,得到下表:
托盘B与点C的距离x/cm
30
25
20
15
10
容器与水的总质量y1/g
10
12
15
20
30
加入的水的质量y2/g
5
7
10
15
25
把上表中的x与y1各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的y1关于x的函数图象.
(1)请在该平面直角坐标系中作出y2关于x的函数图象;
(2)观察函数图象,并结合表中的数据:
①猜测y1与x之间的函数关系,并求y1关于x的函数表达式;
②求y2关于x的函数表达式;
③当0<x≤60时,y1随x的增大而 减小 (填“增大”或“减小”),y2随x的增大而 减小 (填“增大”或“减小”),y2的图象可以由y1的图象向 下 (以“上”或“下”或“左”或“右”)平移得到.
(3)若在容器中加入的水的质量y2(g)满足19≤y2≤45,求托盘B与点C的距离x(cm)的取值范围.
【答案】(1)作出y2关于x的函数图象见解答过程;
(2)①y1是x的反比例函数,y1=;
②y2=﹣5;
③减小,减小,下;
(3)6≤x≤12.5.
【解答】解:(1)作出y2关于x的函数图象如下:
(2)①观察表格可知,y1是x的反比例函数,
设y1=,把(30,10)代入得:10=,
∴k=300,
∴y1关于x的函数表达式是y1=;
②∵y1=y2+5,
∴y2+5=;
∴y2=﹣5;
③观察图象可得,当0<x≤60时,y1随x的增大而减小,y2随x的增大而减小,y2的图象可以由y1的图象向下平移得到;
故答案为:减小,减小,下;
(3)∵y2=﹣5,19≤y2≤45,
∴19≤﹣5≤45,
∴24≤≤50,
∴6≤x≤12.5.
14.(2023•衡阳)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象相交于点A.
(1)求点A的坐标.
(2)分别以点O、A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点B和点C,作直线BC,交x轴于点D.求线段OD的长.
【答案】(1)(3,4);(2).
【解答】解:(1)解方程组(x>0),
得,
∴点A的坐标为(3,4);
(2)设点D的坐标为(x,0).
由题意可知,BC是OA的垂直平分线,
∴AD=OD,
∴(x﹣3)2+42=x2,
∴x=,
∴D(,0),OD=.
15.(2023•永州)小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量筒中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表的一组数据:
时间t
(单位:分钟)
1
2
3
4
5
…
总水量y
(单位:毫升)
7
12
17
22
27
…
(1)探究:根据上表中的数据,请判断和y=kt+b(k,b为常数)哪一个能正确反映总水量y与时间t的函数关系?并求出y关于t的表达式;
(2)应用:
①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?
②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.
【答案】(1)y=5t+2;
(2)①102毫升;②144天.
【解答】解:(1)根据上表中的数据,y=kt+b(k,b为常数)能正确反映总水量y与时间t的函数关系,
∵当t=1时,y=7,当t=2时,y=12,
∴,
∴,
∴y=5t+2;
(2)①当t=20时,y=100+2=102,
即估算小明在第20分钟测量时量筒的总水量是102毫升;
②当t=24×60=1440分钟时,y=5×1440+2=7202(毫升),
当t=0时,y=2,
∴=144(天),
答:估算这个水龙头一个月(按30天计)的漏水量可供一人饮用144天.
16.(2023•株洲)如图所示,在平面直角坐标系Oxy中,四边形OABC为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点A(t,0),点P(1,2)在函数 的图象上.
(1)求k的值;
(2)连接BP、CP,记△BCP的面积为S,设T=2S﹣2t2,求T的最大值.
【答案】(1)k=2;
(2)Tmx=1.
【解答】解:(1)∵点P(1,2)在函数 的图象上,
∴2=,
∴k=2,
即k的值为2;
(2)∵点A(t,0)在x轴负半轴上,
∴OA=﹣t,
∵四边形OABC为正方形,
∴OC=BC=OA=﹣t,BC∥x轴,
∴△BCP的面积为S=×(﹣t)×(2﹣t)=t2﹣t,
∴T=2S﹣2t2=2(t2﹣t)﹣2t2=﹣t2﹣2t=﹣(t+1)2+1,
∵﹣1<0,
∴抛物线开口向下,
∴当t=﹣1时,T有最大值,T的最大值是1.
17.(2023•株洲)某花店每天购进16支某种花,然后出售,如果当天售不完,那么剩下的这种花进行作废处理.该花店记录了10天该种花的日需求量(n为正整数,单位:支),统计如下表:
日需求量n
13
14
15
16
17
18
天数
1
1
2
4
1
1
(1)求该花店在这10天中出现该种花作废处理情形的天数;
(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n﹣80;当n≥16时,日利润为80元.
①当n=14时,问该花店这天的利润为多少元?
②求该花店这10天中日利润为70元的日需求量的频率.
【答案】(1)花店在这10天中出现该种花作废处理情形的天数为4天;
(2)①当n=14时,该花店这天的利润为60元;
②该花店这10天中日利润为70元的日需求量的频率为.
【解答】解:(1)1+1+2=4,
答:花店在这10天中出现该种花作废处理情形的天数为4天;
(2)①当n=14时,y=10n﹣80=10×14﹣80=60,
答:当n=14时,该花店这天的利润为60元;
②当n<16时,70=10n﹣80,解得:n=15,
当n=15时,有2天,
∴=.
答:该花店这10天中日利润为70元的日需求量的频率为.
18.(2023•郴州)已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求的值;
(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=x2﹣5x+4;
(2);
(3) 或(,2)或Q(3,﹣2)或.
【解答】解:(1)∵抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),
,
解得:,
∴抛物线的表达式为y=x2﹣5x+4;
(2)由(1)知y=x2﹣5x+4,当x=0时,y=4,
∴C(0,4),抛物线的对称轴为直线,
∵△PAC的周长等于PA+PC+AC,AC为定长,
∴当PA+PC的值最小时,△PAC的周长最小,
∵A,B关于抛物线的对称轴对称,
∴PA+PC=PB+PC≥BC,当P,B,C三点共线时,PA+PC的值最小,为BC的长,此时点P为直线BC与对称轴的交点,
设直线BC的解析式为:y=mx+n,
则:,
解得:,
∴直线BC的解析式为y=﹣x+4,
当 时,,
∴,
∵A(1,0),C(0,4),
∴PA==,PC==,
∴;
(2)存在,
∵D为OC的中点,
∴D(0,2),
∴OD=2,
∵B(4,0),
∴OB=4,
在Rt△BOD中,,
,
∴∠QDB=∠OBD;
①当Q点在D点上方时:过点D作DQ∥OB,交抛物线于点Q,则:∠QDB=∠OBD,此时Q点纵坐标为2,
设Q点横坐标为t,则:t2﹣5t+4=2,解得:,
∴Q(,2)或(,2);
②当点Q在D点下方时:设DQ与x轴交于点E,
则:DE=BE,
设E(p,0),则:DE2=OE2+OD2=p2+4,BE2=(4﹣p)2,
∴p2+4=(4﹣p)2,
解得:,
∴,
设DE的解析式为:y=kx+q,
则:,
解得:,
∴,
联立,
解得:或,
∴Q(3,﹣2)或;
综上所述, 或(,2)或Q(3,﹣2)或.
19.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).
(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;
(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.
①求证:.
②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.
【答案】(1);(2)①见解析;②0.
【解答】(1)解:∵a=1,c=﹣1,
∴二次函数解析式为y=x2+bx﹣1,
∵该二次函数的图象过点(2,0),
∴4+2b﹣1=0,
解得:b=﹣;
(2)①证明:∵∠DOF=∠DEO,∠ODF=∠EDO,
∴△DOF∽△DEO,
∴,
∴=,
∵,
∴;
②解∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,
∴OA=﹣x1,OB=x2,
∵BE=1.
∴OE=x2﹣1,
∵⊙O的半径长为线段OA的长度的2倍,
∴OD=﹣2x1,
∵,
∴,
∴3x1+x2﹣1=0,
即x2=1﹣3x1①,
∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),
∴x1,x2是方程ax2+bx+c=0的两个根,
∴,
∵4ac=﹣a2﹣b2,a≠0,
∴,
即4(x1x2)+1+(x1+x2)2=0②
①代入②,即,
即,
整理得﹣8(x1)2=﹣2,
∴,
解得:(正值舍去),
∴,
∴抛物线的对称轴为直线,
∴b=﹣2a,
∴2a+b=0.
20.(2023•岳阳)已知抛物线Q1:y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点,交y轴于点C(0,3).
(1)请求出抛物线Q1的表达式.
(2)如图1,在y轴上有一点D(0,﹣1),点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.
(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣2x+3.
(2)存在,E(﹣2,3),F(1,2).
(3)点P的坐标为(1,0)或(﹣2,3).
【解答】解:(1)∵抛物线Q1:y=﹣x2+bx+c经过A(﹣3,0),C(0,3)两点,
∴,
解得:,
∴抛物线Q1的表达式为y=﹣x2﹣2x+3.
(2)存在点E,F使得四边形DAEF为正方形.
理由:
如图1,过点E作EG⊥x轴于点G,则∠AGE=90°=∠AOD,
∵A(﹣3,0),D(0,﹣1),
∴OA=3,OD=1,
∵四边形DAEF是正方形,
∴AE=AD=DF,∠DAE=∠ADF=90°,
∵∠EAG+∠DAO=90°,∠DAO+∠ADO=90°,
∴∠EAG=∠ADO,
∴△EAG≌△ADO(AAS),
∴AG=OD=1,EG=OA=3,
∴E(﹣2,3),
当x=﹣2时,y=﹣x2﹣2x+3=﹣(﹣2)2﹣2×(﹣2)+3=3,
∴点E在抛物线上,
过点F作FL⊥y轴于点L,
同理,△DFL≌△ADO(AAS),
∴FL=OD=1,DL=OA=3,
∴OL=DL﹣OD=3﹣1=2,
F(1,2).
(3)抛物线Q1上存在点P,使得∠CPK=∠CHK.
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线Q1的顶点坐标为(﹣1,4),
∵将抛物线Q1向右平移2个单位,得到抛物线Q2,
∴抛物线Q2的解析式为y=﹣(x+1﹣2)2+4=﹣(x﹣1)2+4,
∵抛物线Q2的顶点为K,与x轴正半轴交于点H,
∴K(1,4),H(3,0),
过点K作KT⊥y轴于点T,连接BC,如图2,过点C作PS⊥y轴交BK于点S,交抛物线Q1于点P,连接PK,
则T(0,4),
∴KT=TC=1,∠KTC=90°,
∴△CKT是等腰直角三角形,
∴∠KCT=45°,CK=KT=,
∵OH=OC=3,∠COH=90°,
∴△COH是等腰直角三角形,
∴∠HCO=45°,CH=OC=3,
∴∠KCH=180°﹣∠KCT﹣∠HCO=90°,
∴tan∠CHK===,
∵∠CPK=∠CHK,
∴tan∠CPK=tan∠CHK=,
∵tan∠BCO==,
∴∠BCO=∠CHK,
∵BK∥OC,
∴∠CBK=∠BCO,
∴∠CBK=∠CHK,
即点P与点B重合时,∠CPK=∠CHK,
∴P1(1,0);
∵SK=1,PS=3,
∴tan∠CPK==,
∴∠CPK=∠CHK,
∵点P与点C关于直线x=﹣1对称,
∴P(﹣2,3);
综上所述,抛物线Q1上存在点P,使得∠CPK=∠CHK,点P的坐标为(1,0)或(﹣2,3).
21.(2023•衡阳)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,连接AC,过B、C两点作直线.
(1)求a的值.
(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.
(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.
【答案】(1)a=﹣1.
(2)存在,D(,).
(3)抛物线上存在点P,使∠PBC+∠ACO=45°,直线BP的解析式为y=﹣x+1或y=﹣3x+9..
【解答】解:(1)∵抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0),
∴a+2a+3=0,
∴a=﹣1.
(2)存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.
∵y=﹣x2+2x+3,
当x=0时,y=3,
∴C(0,3),
当y=0时,﹣x2+2x+3=0,
解得:x1=﹣1,x2=3,
∴B(3,0),
设直线BC的解析式为y=kx+b,则,
解得:,
∴直线BC的解析式为y=﹣x+3,
∵将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点,
∴直线B′C′的解析式为y=﹣x+3﹣m,
设D(t,﹣t2+2t+3),
过点D作DE∥y轴,交B′C′于点E,作DF⊥B′C′于点F,设直线B′C′交y轴于点G,如图,
∴E(t,﹣t+3﹣m),
∴DE=﹣t2+2t+3﹣(﹣t+3﹣m)=﹣t2+3t+m,
∵OB=OC=3,∠BOC=90°,
∴∠BCO=∠CBO=45°,
∵B′C′∥BC,
∴∠B′GO=∠BCO=45°,
∵DE∥y轴,
∴∠DEF=∠B′GO=45°,
∵∠DFE=90°,
∴△DEF是等腰直角三角形,
∴DF=DE=(﹣t2+3t+m)=﹣(t﹣)2+(+m),
∵﹣<0,
∴当t=时,DF取得最大值(+m),此时点D的坐标为(,).
(3)存在.
当∠PBC在BC的下方时,在y轴正半轴上取点M(0,1),连接BM交抛物线于点P,如图,
∵A(﹣1,0),B(3,0),C(0,3),M(0,1),
∴OB=OC=3,OM=OA=1,∠BOM=∠COA=90°,
∴△BOM≌△COA(SAS),
∴∠MBO=∠ACO,
∵∠CBO=45°,
∴∠CBP+∠MBO=45°,
∴∠CBP+∠ACO=45°,
设直线BM的解析式为y=k′x+b′,则,
解得:,
∴直线BM的解析式为y=﹣x+1,
联立,得,
解得:(舍去),,
∴P(﹣,);
当∠PBC在BC的上方时,作点M关于直线BC的对称点M′,如图,连接MM′,CM′,直线BM′交抛物线于P,
由对称得:MM′⊥BC,CM′=CM=2,∠BCM′=∠BCM=45°,
∴∠MCM′=90°,
∴M′(2,3),
则直线BM′的解析式为y=﹣3x+9,
联立,得:,
解得:(舍去),,
∴P(2,3);
综上所述,抛物线上存在点P,使∠PBC+∠ACO=45°,直线BP的解析式为y=﹣x+1或y=﹣3x+9.
22.(2023•怀化)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式及顶点坐标;
(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;
(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.
【答案】(1)抛物线的函数表达式为y=x2+2x﹣8,顶点坐标为(﹣1,﹣9);
(2)S△PAC的最大值为8,点P(﹣2,﹣8);
(3)证明见解答.
【解答】(1)解:∵抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,
∴,
解得:,
∴抛物线的函数表达式为y=x2+2x﹣8,
∵y=x2+2x﹣8=(x+1)2﹣9,
∴抛物线的顶点坐标为(﹣1,﹣9);
(2)解:∵抛物线y=x2+2x﹣8与y轴交于点C,
∴C(0,﹣8),
设直线AC的解析式为y=mx+n,则,
解得:,
∴直线AC的解析式为y=﹣2x﹣8,
设P(t,t2+2t﹣8),
过点P作PF∥y轴,交AC于点F,如图,
则F(t,﹣2t﹣8),
∴PF=﹣2t﹣8﹣(t2+2t﹣8)=﹣t2﹣4t,
∴S△PAC=S△PAF+S△PCF=PF•(t+4)+PF•(﹣t)=2PF=2(﹣t2﹣4t)=﹣2(t+2)2+8,
∵﹣2<0,
∴当t=﹣2时,S△PAC的最大值为8,此时点P(﹣2,﹣8);
(3)证明:∵直线l1:y=kx+k﹣交抛物线于点M、N,
∴x2+2x﹣8=kx+k﹣,
整理得:x2+(2﹣k)x+﹣k=0,
∴xM+xN=k﹣2,xMxN=﹣k,
∵yM=kxM+k﹣,yN=kxN+k﹣,
∴yM﹣yN=k(xM﹣xN),
∴MN2=(xM﹣xN)2+(yM﹣yN)2=(1+k2)(xM﹣xN)2=(1+k2)[(xM+xN)2﹣4xMxN]=(1+k2)[(k﹣2)2﹣4(﹣k)]=(1+k2)2,
∵设MN的中点为O′,
∴O′(,k2﹣),
过点O′作O′E⊥直线l2:y=﹣,垂足为E,如图,
∴E(,﹣),
∴O′E=k2﹣﹣(﹣)=(1+k2),
∴O′E=MN,
∴以MN为直径的⊙O′一定经过点E,
∴∠MEN=90°,
∴在直线l2:y=﹣上总存在一点E,使得∠MEN为直角.
23.(2023•永州)如图1,抛物线y=ax2+bx+c(a,b,c为常数)经过点F(0,5),
顶点坐标为(2,9),点P(x1,y1)为抛物线上的动点,PH⊥x轴于H,且.
(1)求抛物线的表达式;
(2)如图1,直线OP:交BF于点G,求的最大值;
(3)如图2,四边形OBMF为正方形,PA交y轴于点E,BC交FM的延长线于C,且BC⊥BE,PH=FC,求点P的横坐标.
【答案】(1)抛物线的表达式为y=﹣x2+4x+5;
(2)的最大值为;
(3)点P的横坐标为.
【解答】解:(1)∵抛物线y=ax2+bx+c(a,b,c为常数)经过点F(0,5),顶点坐标为(2,9),
∴,
解得,
∴抛物线的表达式为y=﹣x2+4x+5;
(2)过点G作GT⊥x轴于点T,如图所示,
在y=﹣x2+4x+5中,令y=0得0=﹣x2+4x+5,
解得x=5或x=﹣1,
∴A(﹣1,0),B(5,0),
∵F(0,5),
∴BO=FO=5,
设直线BF的解析式为:y=kx+5,
∴y=5k+5,
解得k=﹣1,
∴直线BF的解析式为y=﹣x+5,
由G在直线BF上,设G(m,﹣m+5),
∵G在直线OP上,直线OP为,
∴﹣m+5=m,
∴,
∴,
由P(x1,y1) 在抛物线 y=﹣x2+4x+5上,知P(x1,﹣+4x1+5),
∴,
∵S△BPG=S△BPO﹣S△BOG,
∴==﹣1=﹣1=﹣1,
∵==,
∴=﹣1=﹣1=﹣1=﹣(x1﹣)2+,
∵,,
∴当 时,取最大值,最大值为;
(3)设MF交PH于T,如图:
∵OBFM为正方形,F(0,5),
∴FM=BM=OF=BO=5,∠MBO=90°,FC∥OB,
∵PH⊥x,∠MBO=90°,FC∥OB,
∴MTBH为矩形,
∴TH=MB=FM=5,
∵PH=FC,
∴PT=MC,
∵BC⊥BE,
∴∠MBC+∠MBE=90°,
∵∠MBO=90°,
∴∠OBE+∠MBE=90°,
∴∠OBE=∠MBC,
∴∠CMB=∠EOB=90°,
∴△EOB∽△CMB,
∴,
∵OB=MB,
∴EO=MC,
∵PH=FC,
∴PT=MC,
∴EO=MC=PT,
设 EO=MC=PT=a,
∴PH=PT+TH=5+a,E(0,a),
∵A(﹣1,0),
设直线AP的解析式为y=kx+b,
则,
∴,
∴直线AP的解析式为y=ax+a,
∵PH=a+5,P在直线AP上,
∴a+5=ax+a,
∴,即P点横坐标为 ,
∴x1=,y1=a+5,
∴a=,y1=+5
∴+5=﹣+4x1+5,
∴﹣4+5=0,
∴(x1+1)(﹣5x1+5)=0,
解得x1=1或x1=或x1=,
∵x1≥,
∴x1=,
∴点P的横坐标为.
方法2:
设P(m,﹣m2+4m+5),
∴OH=m,PH=﹣m2+4m+5,
∵=tan∠EAO=,
∴=,
∴EO=5﹣m,
∵BC⊥BE,
∴∠CBM=90°﹣∠MBE=∠EBO,
∵∠CMB=90°=∠EOB,BM=OB,
∴△CMB≌△EOB(ASA),
∴CM=EO=5﹣m,
∴CF=CM+FM=5﹣m+5=10﹣m,
∵PH=CF,
∴﹣m2+4m+5=10﹣m,
解得m=或m=,
∵m≥,
∴m=,
∴点P的横坐标为.
24.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.
(1)求抛物线的解析式.
(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.
(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.
【答案】(1)抛物线解析式为y=﹣x2+x+4;
(2)△NED面积的最大值是7;
(3)R的坐标为(,)或(,)或(,)或(,)或(,).
【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+x+c 得:
,
解得:,
∴抛物线解析式为y=﹣x2+x+4;
(2)联立,
解得或,
∴D(2+,﹣3﹣),E(2﹣,﹣3+),
∵点M为直线l上的一动点,横坐标为t,
∴M(t,﹣t﹣1),
∴N(t,﹣t2+t+4),
∴MN=﹣t2+t+4﹣(﹣t﹣1)=﹣t2+2t+5,
∴S△NED=MN•|xD﹣xE|=×(﹣t2+2t+5)×2=﹣(t﹣2)2+7,
∵﹣<0,0<t<4,
∴当t=2时,S△NED取最大值7,
∴△NED面积的最大值是7;
(3)在y=﹣x2+x+4中,令x=0得y=4,
∴C(0,4),
设M(t,﹣t﹣1),R(m,n),
又B(4,0),
①当BC,MR为对角线时,BC,MR的中点重合,且BM=CM,
∴,
解得,
∴R(,);
②当BM,CR为对角线时,BM,CR的中点重合,且BC=CM,
∴,
解得或,
∴R(,)或(,);
③当BR,CM为对角线时,BR,CM的中点重合,且BC=BM,
∴,
解得或,
∴R(,)或(,);
综上所述,R的坐标为(,)或(,)或(,)或(,)或(,).
相关试卷
这是一份2023年浙江省各市中考数学真题汇编——方程与不等式(含答案),共9页。试卷主要包含了方程的解是 等内容,欢迎下载使用。
这是一份2023年四川省各市中考数学试题真题汇编——函数(含答案),共65页。试卷主要包含了,且1<m<2,有下列结论等内容,欢迎下载使用。
这是一份2023年辽宁省各市中考数学试题真题汇编——函数(含答案),共58页。试卷主要包含了的图象经过B,C两点等内容,欢迎下载使用。