河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)
展开
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案),共21页。试卷主要包含了计算,0;,0+2﹣1;,,且经过小正方形的顶点B,是水柱距地面的高度等内容,欢迎下载使用。
河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.完全平方公式(共1小题)
1.(2023•河南)(1)计算:;
(2)化简:(x﹣2y)2﹣x(x﹣4y).
二.分式的混合运算(共1小题)
2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;
(2)化简:(1﹣)÷.
三.负整数指数幂(共1小题)
3.(2022•河南)(1)计算:﹣()0+2﹣1;
(2)化简:÷(1﹣).
四.分式方程的应用(共1小题)
4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.
(1)求菜苗基地每捆A种菜苗的价格.
(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
五.一元一次不等式的应用(共1小题)
5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.
活动一:所购商品按原价打八折;
活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)
(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;
(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;
(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.
六.一次函数的应用(共1小题)
6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:
类别
价格
A款玩偶
B款玩偶
进货价(元/个)
40
30
销售价(元/个)
56
45
(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.
(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?
(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?
(注:利润率=×100%)
七.待定系数法求反比例函数解析式(共1小题)
7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.
(1)求反比例函数的解析式;
(2)求图中阴影部分的面积.
八.二次函数的应用(共2小题)
8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.
如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离 OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.
(1)求点P的坐标和a的值;
(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.
9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
九.圆的综合题(共1小题)
10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.
(1)求证:∠BOC+∠BAD=90°.
(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
一十.频数(率)分布表(共1小题)
11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:
a.成绩频数分布表:
成绩x(分)
50≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
频数
7
9
12
16
6
b.成绩在70≤x<80这一组的是(单位:分):
70 71 72 72 74 77 78 78 78 79 79 79
根据以上信息,回答下列问题:
(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为 .
(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.
一十一.条形统计图(共1小题)
12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.
调查问卷
1.近两周你平均每天睡眠时间大约是______小时.
如果你平均每天睡眠时间不足9小时,请回答第2个问题
2.影响你睡眠时间的主要原因是______(单选).
A.校内课业负担重
B.校外学习任务重
C.学习效率低
D.其他
平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.
根据以上信息,解答下列问题:
(1)本次调查中,平均每天睡眠时间的中位数落在第 (填序号)组,达到9小时的学生人数占被
调查人数的百分比为 ;
(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.
一十二.折线统计图(共1小题)
13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:
a.配送速度得分(满分10分):
甲:6 6 7 7 7 8 9 9 9 10
乙:6 7 7 8 8 8 8 9 9 10
b.服务质量得分统计图(满分10分):
c.配送速度和服务质量得分统计表:
项目
统计量
快递公司
配送速度得分
服务质量得分
平均数
中位数
平均数
方差
甲
7.8
m
7
乙
8
8
7
根据以上信息,回答下列问题:
(1)表格中的m= ;S甲2 S乙2(填“>”“=”或“<”);
(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;
(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?
河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.完全平方公式(共1小题)
1.(2023•河南)(1)计算:;
(2)化简:(x﹣2y)2﹣x(x﹣4y).
【答案】(1),(2)4y2.
【解答】解:(1)=3﹣3+=,
(2)(x﹣2y)2﹣x(x﹣4y)=x2﹣4xy+4y2﹣x2+4xy=4y2.
二.分式的混合运算(共1小题)
2.(2021•河南)(1)计算:3﹣1﹣+(3﹣)0;
(2)化简:(1﹣)÷.
【答案】(1)1;
(2).
【解答】解:(1)原式=﹣+1
=1;
(2)原式=•
=.
三.负整数指数幂(共1小题)
3.(2022•河南)(1)计算:﹣()0+2﹣1;
(2)化简:÷(1﹣).
【答案】(1);
(2)x+1.
【解答】解:(1)原式=3﹣1+
=;
(2)原式=÷
=•
=x+1.
四.分式方程的应用(共1小题)
4.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.
(1)求菜苗基地每捆A种菜苗的价格.
(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
【答案】(1)菜苗基地每捆A种菜苗的价格是20元;
(2)本次购买最少花费2250元.
【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,
根据题意得:=+3,
解得x=20,
经检验,x=20是原方程的解,
答:菜苗基地每捆A种菜苗的价格是20元;
(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,
∵A种菜苗的捆数不超过B种菜苗的捆数,
∴m≤100﹣m,
解得m≤50,
设本次购买花费w元,
∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,
∵﹣9<0,
∴w随m的增大而减小,
∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),
答:本次购买最少花费2250元.
五.一元一次不等式的应用(共1小题)
5.(2023•河南)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.
活动一:所购商品按原价打八折;
活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)
(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;
(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;
(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.
【答案】(1)选择活动一更合算;
(2)一件这种健身器材的原价是400元;
(3)300≤a<400或600≤a<800.
【解答】解:(1)∵450×=360(元),450﹣80=370(元),
∴选择活动一更合算;
(2)设一件这种健身器材的原价为x元,
若x<300,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;
∴300≤x<500,
∴x=x﹣80,
解得x=400,
∴一件这种健身器材的原价是400元;
(3)当300≤a<600时,a﹣80<0.8a,
解得a<400;
∴300≤a<400;
当600≤a<900时,a﹣160<0.8a,
解得a<800;
∴600≤a<800;
综上所述,300≤a<400或600≤a<800.
六.一次函数的应用(共1小题)
6.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:
类别
价格
A款玩偶
B款玩偶
进货价(元/个)
40
30
销售价(元/个)
56
45
(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.
(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?
(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?
(注:利润率=×100%)
【答案】(1)A款玩偶购进20个,B款玩偶购进10个;
(2)按照购进A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;
(3)从利润率的角度分析,对于小李来说第二次的进货方案更合算.
【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,
由题意,得40x+30(30﹣x)=1100,
解得:x=20.
30﹣20=10(个).
答:A款玩偶购进20个,B款玩偶购进10个;
(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,
由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.
∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.
∴a≤(30﹣a),
∴a≤10,
∵y=a+450.
∴k=1>0,
∴y随a的增大而增大.
∴a=10时,y最大=460元.
∴B款玩偶为:30﹣10=20(个).
答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;
(3)第一次的利润率=×100%≈42.7%,
第二次的利润率=×100%=46%,
∵46%>42.7%,
∴对于小李来说第二次的进货方案更合算.
七.待定系数法求反比例函数解析式(共1小题)
7.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.
(1)求反比例函数的解析式;
(2)求图中阴影部分的面积.
【答案】(1)反比例函数的解析式为y=;
(2)8.
【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),
∴2=,
∴k=2,
∴反比例函数的解析式为y=;
(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,
∴设B点的坐标为(m,m),
∵反比例函数y=的图象经过B点,
∴m=,
∴m2=2,
∴小正方形的面积为4m2=8,
∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),
∴大正方形在第一象限的顶点坐标为(2,2),
∴大正方形的面积为4×22=16,
∴图中阴影部分的面积=大正方形的面积﹣小正方形的面积=16﹣8=8.
八.二次函数的应用(共2小题)
8.(2023•河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.
如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离 OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系y=﹣0.4x+2.8;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系y=a(x﹣1)2+3.2.
(1)求点P的坐标和a的值;
(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.
【答案】(1)点P的坐标为(0,2.8);a的值是﹣0.4;
(2)选择吊球方式,球的落地点到C点的距离更近.
【解答】解:(1)在y=﹣0.4x+2.8中,令x=0得y=2.8,
∴点P的坐标为(0,2.8);
把P(0,2.8)代入y=a(x﹣1)2+3.2得:a+3.2=2.8,
解得:a=﹣0.4,
∴a的值是﹣0.4;
(2)∵OA=3m,CA=2m,
∴OC=5m,
∴C(5,0),
在y=﹣0.4x+2.8中,令y=0得x=7,
在y=﹣0.4(x﹣1)2+3.2中,令y=0得x=﹣2+1(舍去)或x=2+1≈3.82,
∵|7﹣5|>|3.82﹣5|,
∴选择吊球方式,球的落地点到C点的距离更近.
9.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
【答案】(1)抛物线的表达式为y=﹣x2+x+;
(2)当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.
【解答】解:(1)由题意知,抛物线顶点为(5,3.2),
设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:
0.7=25a+3.2,
解得a=﹣,
∴y=﹣(x﹣5)2+3.2=﹣x2+x+,
答:抛物线的表达式为y=﹣x2+x+;
(2)当y=1.6时,﹣x2+x+=1.6,
解得x=1或x=9,
∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),
答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.
九.圆的综合题(共1小题)
10.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.
(1)求证:∠BOC+∠BAD=90°.
(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
【答案】(1)证明见解答过程;
(2)50cm.
【解答】( 1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.
∵CD与⊙O相切于点C,
∴∠OCD=90°.
∵AD⊥CD,
∴∠ADC=90°.
∵EF∥CD,
∴∠OFB=∠AEB=90°,
∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,
∵AB为⊙O的切线,
∴∠OBA=90°.
∴∠OBF+∠ABE=90°,
∴∠OBF=∠BAD,
∴∠BOC+∠BAD=90°;
方法2:如图2,延长OB交CD于点M.
∵CD与⊙O相切于点C,
∴∠OCM=90°,
∴∠BOC+∠BMC=90°,
∵AD⊥CD,
∴∠ADC=90°.
∵AB为⊙O的切线,
∴∠OBA=90°,
∴∠ABM=90°.
∴在四边形ABMD中,∠BAD+∠BMD=180°.
∵∠BMC+∠BMD=180°,
∴∠BMC=∠BAD.
∴∠BOC+∠BAD=90°;
方法3:如图3,过点B作BN∥AD,
∴∠NBA=∠BAD.
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AD⊥CD,
∴∠ADC=90°.
∴AD∥OC,
∴BN∥OC,
∴∠NBO=∠BOC.
∵AB为OO的切线,
∴∠OBA=90°,
∴∠NBO+∠NBA=90°,
∴∠BOC+∠BAD=90°.
(2)解:如图1,在Rt△ABE中,
∵AB=75,cos∠BAD=,
∴AE=45.
由(1)知,∠OBF=∠BAD,
∴cos∠OBF=,
在Rt△OBF中,
∵OB=25,
∴BF=15,
∴OF=20.
∵OC=25,
∴CF=5.
∵∠OCD=∠ADC=∠CFE=90°,
∴四边形CDEF为矩形,
∴DE=CF=5,
∴AD=AE+ED=50cm.
一十.频数(率)分布表(共1小题)
11.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:
a.成绩频数分布表:
成绩x(分)
50≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
频数
7
9
12
16
6
b.成绩在70≤x<80这一组的是(单位:分):
70 71 72 72 74 77 78 78 78 79 79 79
根据以上信息,回答下列问题:
(1)在这次测试中,成绩的中位数是 78.5 分,成绩不低于80分的人数占测试人数的百分比为 44% .
(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.
【答案】见试题解答内容
【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为=78.5(分),
所以这组数据的中位数是78.(5分),
成绩不低于8(0分)的人数占测试人数的百分比为×100%=44%,
故答案为:78.5,44%;
(2)不正确,
因为甲的成绩7(7分)低于中位数78.(5分),
所以甲的成绩不可能高于一半学生的成绩;
(3)测试成绩不低于8(0分)的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).
一十一.条形统计图(共1小题)
12.(2021•河南)2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.
调查问卷
1.近两周你平均每天睡眠时间大约是______小时.
如果你平均每天睡眠时间不足9小时,请回答第2个问题
2.影响你睡眠时间的主要原因是______(单选).
A.校内课业负担重
B.校外学习任务重
C.学习效率低
D.其他
平均每天睡眠时间x(时)分为5组:①5≤x<6;②6≤x<7;③7≤x<8;④8≤x<9;⑤9≤x<10.
根据以上信息,解答下列问题:
(1)本次调查中,平均每天睡眠时间的中位数落在第 ③ (填序号)组,达到9小时的学生人数占被
调查人数的百分比为 17% ;
(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.
【答案】见试题解答内容
【解答】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,
故落在第③组;
睡眠达到9小时的学生人数占被调查人数的百分比为:×100%=17%,
故答案为:③,17%.
(2)答案不唯一,言之有理即可.
例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.
一十二.折线统计图(共1小题)
13.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:
a.配送速度得分(满分10分):
甲:6 6 7 7 7 8 9 9 9 10
乙:6 7 7 8 8 8 8 9 9 10
b.服务质量得分统计图(满分10分):
c.配送速度和服务质量得分统计表:
项目
统计量
快递公司
配送速度得分
服务质量得分
平均数
中位数
平均数
方差
甲
7.8
m
7
乙
8
8
7
根据以上信息,回答下列问题:
(1)表格中的m= 7.5 ;S甲2 < S乙2(填“>”“=”或“<”);
(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;
(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?
【答案】(1)7.5,<;
(2)小丽应选择甲公司(答案不唯一),理由见解答;
(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)
【解答】解:(1)甲公司配送速度得分从小到大排列为:6 6 7 7 7 8 9 9 9 10,
一共10个数据,其中第5个与第6个数据分别为7、8,
所以中位数m==7.5.
=×[3×(7﹣7)2+4×(8﹣7)2+2×(6﹣7)2+(5﹣7)2]=1,
=×[(4﹣7)2+(8﹣7)2+2×(10﹣7)2+2×(6﹣7)2+(9﹣7)2+2×(5﹣7)2+(7﹣7)2]=4.2,
∴<,
故答案为:7.5,<;
(2)小丽应选择甲公司(答案不唯一),理由如下:
∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,
∴甲更稳定,
∴小丽应选择甲公司;
(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共22页。试卷主要包含了计算,0;,0+2﹣1;,,且经过小正方形的顶点B,是水柱距地面的高度等内容,欢迎下载使用。
这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了计算,,其中x=+1,÷,其中a=,解方程,如图,DB是▱ABCD的对角线等内容,欢迎下载使用。
这是一份天津市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案),共15页。试卷主要包含了解不等式组等内容,欢迎下载使用。