终身会员
搜索
    上传资料 赚现金

    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)

    立即下载
    加入资料篮
    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)第1页
    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)第2页
    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)第3页
    还剩51页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)

    展开

    这是一份黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案),共54页。试卷主要包含了÷,其中m=tan60°﹣1,÷,其中a=2cs30°+1,先化简,再求值,之间的函数图象如图所示等内容,欢迎下载使用。
    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类
    一.分式的化简求值(共3小题)
    1.(2023•黑龙江)先化简,再求值:(1﹣)÷,其中m=tan60°﹣1.
    2.(2022•黑龙江)先化简,再求值:(﹣1)÷,其中a=2cos30°+1.
    3.(2021•黑龙江)先化简,再求值:,其中a=2cos60°+1.
    二.二元一次方程组的应用(共1小题)
    4.(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元;购进15根A种跳绳和10根B种跳绳共需300元.
    (1)求购进一根A种跳绳和一根B种跳绳各需多少元?
    (2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?
    (3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?
    三.分式方程的应用(共1小题)
    5.(2023•黑龙江)2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.
    (1)求A款文化衫和B款文化衫每件各多少元?
    (2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?
    (3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.
    四.一元一次不等式组的应用(共1小题)
    6.(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
    (1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
    (3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?
    五.一次函数的应用(共3小题)
    7.(2023•黑龙江)已知甲,乙两地相距480km,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km,货车继续出发h后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:
    (1)图中a的值是    ;
    (2)求货车装完货物后驶往甲地的过程中,距其出发地的距离y(km)与行驶时间x(h)之间的函数关系式;
    (3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距12km.

    8.(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.
    (1)甲车速度是    km/h,乙车出发时速度是    km/h;
    (2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);
    (3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.

    9.(2021•黑龙江)已知A、B两地相距240km,一辆货车从A前往B地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B地前往A地,到达A地后(在A地停留时间不计)立即原路原速返回.如图是两车距B地的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:
    (1)图中m的值是    ;轿车的速度是    km/h;
    (2)求货车从A地前往B地的过程中,货车距B地的距离y(km)与行驶时间x(h)之间的函数关系式;
    (3)直接写出轿车从B地到A地行驶过程中,轿车出发多长时间与货车相距12km?

    六.一次函数综合题(共1小题)
    10.(2023•黑龙江)如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.
    (1)求直线AD的解析式;
    (2)连接MN,求△MDN的面积S与运动时间t的函数关系式;
    (3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.

    七.待定系数法求二次函数解析式(共1小题)
    11.(2022•黑龙江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.
    (1)求抛物线的解析式;
    (2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.

    八.抛物线与x轴的交点(共1小题)
    12.(2023•黑龙江)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点.交y轴于点C.
    (1)求抛物线的解析式;
    (2)抛物线上是否存在一点P,使得S△PBC=S△ABC,若存在,请直接写出点P的坐标;若不存在,请说明理由.

    九.二次函数综合题(共1小题)
    13.(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.
    (1)求抛物线的解析式;
    (2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.

    一十.全等三角形的判定与性质(共1小题)
    14.(2022•黑龙江)△ABC和△ADE都是等边三角形.
    (1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);
    (2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
    (3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.


    一十一.四边形综合题(共2小题)
    15.(2022•黑龙江)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA<OB),tan∠DAB=,动点P从点D出发以每秒1个单位长度的速度沿折线DC﹣CB向点B运动,到达B点停止.设运动时间为t秒,△APC的面积为S.
    (1)求点C的坐标;
    (2)求S关于t的函数关系式,并写出自变量t的取值范围;
    (3)在点P的运动过程中,是否存在点P,使△CMP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    16.(2021•黑龙江)如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE=,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.
    (1)求点B的坐标;
    (2)求S关于t的函数关系式,并写出自变量t的取值范围;
    (3)当点F落在线段OB上时,坐标平面内是否存在一点P,使以M、A、O、P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

    一十二.坐标与图形变化-平移(共1小题)
    17.(2022•黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣1),B(2,﹣5),C(5,﹣4).
    (1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1,画出两次平移后的△A1B1C1,并写出点A1的坐标;
    (2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2的坐标;
    (3)在(2)的条件下,求点A1旋转到点A2的过程中所经过的路径长(结果保留π).

    一十三.作图-平移变换(共1小题)
    18.(2023•黑龙江)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).
    (1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1;
    (2)请画出△ABC关于y轴对称的△A2B2C2;
    (3)将△A2B2C2绕着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).

    一十四.作图-旋转变换(共1小题)
    19.(2021•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).
    (1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;
    (2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;
    (3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).

    一十五.几何变换综合题(共1小题)
    20.(2021•黑龙江)在等腰△ADE中,AE=DE,△ABC是直角三角形,∠CAB=90°,∠ABC=∠AED,连接CD、BD,点F是BD的中点,连接EF.
    (1)当∠EAD=45°,点B在边AE上时,如图①所示,求证:EF=CD;
    (2)当∠EAD=45°,把△ABC绕点A逆时针旋转,顶点B落在边AD上时,如图②所示,当∠EAD=60°,点B在边AE上时,如图③所示,猜想图②、图③中线段EF和CD又有怎样的数量关系?请直接写出你的猜想,不需证明.

    一十六.相似三角形的判定与性质(共1小题)
    21.(2023•黑龙江)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=FG.
    若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②;若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③;其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.

    一十七.条形统计图(共3小题)
    22.(2023•黑龙江)某中学开展主题为“垃圾分类,绿色生活”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校团委在校园内随机抽取了部分学生进行问卷调查,将他们的得分按A:优秀,B:良好,C:合格,D:不合格四个等级进行统计,并绘制了如下不完整的条形统计图和扇形统计图.
    (1)这次学校抽查的学生人数是    ;
    (2)将条形图补充完整;
    (3)扇形统计图中C组对应的扇形圆心角度数是    °;
    (4)如果该校共有2200人,请估计该校不合格的人数.

    23.(2022•黑龙江)为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x小时,其中的分组情况是:
    A组:x<8.5
    B组:8.5≤x<9
    C组:9≤x<9.5
    D组:9.5≤x<10
    E组:x≥10
    根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
    (1)本次共调查了    名学生;
    (2)补全条形统计图;
    (3)在扇形统计图中,求D组所对应的扇形圆心角的度数;
    (4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?

    24.(2021•黑龙江)为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩分成A、B、C、D、E五个等级进行统计,并绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:

    (1)本次调查中共抽取    名学生;
    (2)补全条形统计图;
    (3)在扇形统计图中,求B等级所对应的扇形圆心角的度数;
    (4)若该校有1200名学生参加此次竞赛,估计这次竞赛成绩为A和B等级的学生共有多少名?

    黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-03解答题知识点分类
    参考答案与试题解析
    一.分式的化简求值(共3小题)
    1.(2023•黑龙江)先化简,再求值:(1﹣)÷,其中m=tan60°﹣1.
    【答案】;.
    【解答】解:原式=÷
    =×
    =.
    当m=tan60°﹣1=﹣1时,
    原式=

    =.
    2.(2022•黑龙江)先化简,再求值:(﹣1)÷,其中a=2cos30°+1.
    【答案】,﹣.
    【解答】解:(﹣1)÷
    =÷
    =×
    =,
    当a=2cos30°+1=2×+1=时,
    原式==﹣.
    3.(2021•黑龙江)先化简,再求值:,其中a=2cos60°+1.
    【答案】,.
    【解答】解:原式=

    =,
    当a=2cos60°+1=2×+1=2时,
    原式==.
    二.二元一次方程组的应用(共1小题)
    4.(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元;购进15根A种跳绳和10根B种跳绳共需300元.
    (1)求购进一根A种跳绳和一根B种跳绳各需多少元?
    (2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?
    (3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?
    【答案】(1)购进一根A种跳绳需10元,购进一根B种跳绳需15元;
    (2)共有3种购买方案,
    方案1:购买23根A种跳绳,22根B种跳绳;
    方案2:购买24根A种跳绳,21根B种跳绳;
    方案3:购买25根A种跳绳,20根B种跳绳;
    (3)在(2)的条件下,购买方案3需要的总费用最少,最少费用是550元.
    【解答】解:(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,
    依题意得:,
    解得:.
    答:购进一根A种跳绳需10元,购进一根B种跳绳需15元.
    (2)∵该班级计划购买A、B两种跳绳共45根,且购买A种跳绳m根,
    ∴购买B种跳绳(45﹣m)根.
    依题意得:,
    解得:23≤m≤25.4,
    又∵m为整数,
    ∴m可以取23,24,25,
    ∴共有3种购买方案,
    方案1:购买23根A种跳绳,22根B种跳绳;
    方案2:购买24根A种跳绳,21根B种跳绳;
    方案3:购买25根A种跳绳,20根B种跳绳.
    (3)设购买跳绳所需总费用为w元,则w=10m+15(45﹣m)=﹣5m+675.
    ∵﹣5<0,
    ∴w随m的增大而减小,
    ∴当m=25时,w取得最小值,最小值=﹣5×25+675=550.
    答:在(2)的条件下,购买方案3需要的总费用最少,最少费用是550元.
    三.分式方程的应用(共1小题)
    5.(2023•黑龙江)2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.
    (1)求A款文化衫和B款文化衫每件各多少元?
    (2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?
    (3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.
    【答案】(1)A款文化衫每件50元,B款文化衫每件40元;
    (2)共有6种购买方案;
    (3)m=5.
    【解答】解:(1)设B款文化衫每件x元,则A款文化衫每件(x+10)元,
    根据题意得:=,
    解得:x=40,
    经检验,x=40是所列方程的解,且符合题意,
    ∴x+10=40+10=50.
    答:A款文化衫每件50元,B款文化衫每件40元;
    (2)设购买y件A款文化衫,则购买(300﹣y)件B款文化衫,
    根据题意得:,
    解得:275≤y≤280,
    又∵y为正整数,
    ∴y可以为275,276,277,278,279,280,
    ∴共有6种购买方案;
    (3)设购买300件两款文化衫所需总费用为w元,则w=50×0.7y+(40﹣m)(300﹣y)=(m﹣5)y+300(40﹣m),
    ∵(2)中的所有购买方案所需资金恰好相同,
    ∴w的值与y值无关,
    ∴m﹣5=0,
    ∴m=5.
    答:m的值为5.
    四.一元一次不等式组的应用(共1小题)
    6.(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
    (1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
    (3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?
    【答案】(1)购进1件甲种农机具需要1.5万元,购进1件乙种农机具需要0.5万元.
    (2)答:一共三种方案分别是:
    方案一:购买甲种农机具5件,乙种农机具5件.
    方案二:购买甲种农机具6件,乙种农机具4件.
    方案三:购买甲种农机具7件,乙种农机具3件.
    方案一需要的资金最少,最少资金是10万元.
    (3)节省的资金全部用于再次购买农机具的方案有两种:
    方案一:购买甲种农机具0件,乙种农机具15件.
    方案二:购买甲种农机具3件,乙种农机具7件.
    【解答】解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.
    根据题意得:,
    解得:,
    答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.
    (2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,
    根据题意得:,
    解得:4.8≤m≤7.
    ∵m为整数.
    ∴m可取5、6、7.
    ∴有三种方案:
    方案一:购买甲种农机具5件,乙种农机具5件.
    方案二:购买甲种农机具6件,乙种农机具4件.
    方案三:购买甲种农机具7件,乙种农机具3件.
    设总资金为w万元.
    w=1.5m+0.5(10﹣m)=m+5.
    ∵k=1>0,
    ∴w随着m的减少而减少,
    ∴m=5时,w最小=1×5+5=10(万元).
    ∴方案一需要资金最少,最少资金是10万元.
    (3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,
    由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,
    其整数解:或,
    ∴节省的资金全部用于再次购买农机具的方案有两种:
    方案一:购买甲种农机具0件,乙种农机具15件.
    方案二:购买甲种农机具3件,乙种农机具7件.
    五.一次函数的应用(共3小题)
    7.(2023•黑龙江)已知甲,乙两地相距480km,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km,货车继续出发h后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:
    (1)图中a的值是  120 ;
    (2)求货车装完货物后驶往甲地的过程中,距其出发地的距离y(km)与行驶时间x(h)之间的函数关系式;
    (3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距12km.

    【答案】(1)120;
    (2)y=60x;
    (3)在出租车返回的行驶过程中,货车出发h或h与出租车相距12km.
    【解答】解:(1)由图象知,C(4,480),
    设直线OC的解析式为y=kx,把C(4,480)代入得,480=4k,
    解得k=120,
    ∴直线OC的解析式为y=120x;把(1,a)代入y=120x,得a=120,
    故答案为:120;
    (2)由停下来装完货物后,发现此时与出租车相距120km,可得此时出租车距离乙地为120+120=240(km),
    ∴出租车距离甲地为480﹣240=240(km),
    把y=240代入y=120x得,240=120x,
    解得x=2,
    ∴货车装完货物时,x=2,B(2,120),
    根据货车继续出发h后与出租车相遇,
    可得×*出租车的速度+货车的速度)=120,
    根据直线OC的解析式为y=120x,
    可得出租车的速度为120km/h,
    ∴相遇时,货车的速度为120﹣120=60(km/h),
    故可设直线BG的解析式为y=60x+b,
    将B(2,120)代入y=60x+b,可得120=120+b,
    解得b=0,
    ∴直线BG的解析式为y=60x,
    故货车装完货物后驶往甲地的过程中,距其出发地的距离y(km)与行驶时间x(h)之间的函数关系式为y=60x,
    (3)把y=480代入y=60x,可得480=60x,
    解得x=8,
    ∴G(8,480),
    ∴F(8,0),
    根据出租车到达乙地后立即按原路返回,经过比货车早15分钟到达甲地,可得EF=,
    ∴,
    ∴出租车返回后的速度为480÷()=128km/h,
    设在出租车返回的行驶过程中,货车出发t小时,与出租车相距12km,
    此时货车距离乙地为60tkm,出租车距离乙地为128(t﹣4)=(128t﹣512)km,
    ①出租车和货车第二次相遇前,相距12km时,可得60t1﹣(128t1﹣512)=12,
    解得t1=;
    ②出租车和货车第二次相遇后,相距12km时,可得(128t2﹣512)﹣60t2=12,
    解得t2=,
    故在出租车返回的行驶过程中,货车出发h或h与出租车相距12km.
    8.(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.
    (1)甲车速度是  100 km/h,乙车出发时速度是  60 km/h;
    (2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);
    (3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.

    【答案】见试题解答内容
    【解答】解:(1)由图象可得,
    甲车的速度为:500÷5=100(km/h),
    乙车出发时速度是:300÷5=60(km/h),
    故答案为:100,60;
    (2)乙车返回过程中,设乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式是y=kx+b,
    ∵点(9,300),(12,0)在该函数图象上,
    ∴,
    解得,
    即乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式是y=﹣100x+1200;
    (3)设乙车出发m小时,两车之间的距离是120km,
    当0<m<5时,
    100m﹣60m=120,
    解得m=3;
    当5.5<m<8时,
    100(m﹣5.5)+120+300=500,
    解得m=6.3;
    当9<m<12时,
    乙车返回的速度为:300÷(12﹣9)=100(km/h),
    100(m﹣8)+100(m﹣9)=120,
    解得m=9.1;
    答:乙车出发3小时或6.3小时或9.1小时,两车之间的距离是120km.
    9.(2021•黑龙江)已知A、B两地相距240km,一辆货车从A前往B地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B地前往A地,到达A地后(在A地停留时间不计)立即原路原速返回.如图是两车距B地的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:
    (1)图中m的值是  5 ;轿车的速度是  120 km/h;
    (2)求货车从A地前往B地的过程中,货车距B地的距离y(km)与行驶时间x(h)之间的函数关系式;
    (3)直接写出轿车从B地到A地行驶过程中,轿车出发多长时间与货车相距12km?

    【答案】(1)5;120;(2);(3)1小时或小时.
    【解答】解:(1)由图象得,m=1+(3﹣1)×2=5;
    轿车的速度为:240÷2=120(km/h);
    故答案为:5;120;
    (2)①设yMN=k1x+b1(k1≠0)(0≤x<2.5),
    ∵图象经过点M(0,240)和点N(2.5,75),
    ∴,
    解得,
    ∴yMN=﹣66x+240(0≤x<2.5),
    yNG=75(2.5≤x<3.5);
    ②设yGH=k2x+b2(k2≠0)(3.5≤x≤5),
    ∵图象经过点G(3.5,75)和点H(5,0),
    ∴,
    解得,
    ∴yGH=﹣50x+250,
    ∴;
    (3)货车从A前往B地的速度为:(240﹣75)÷2.5=66(km/h),
    设轿车出发a小时与货车相距12km,
    根据题意,得66(1+a)+120a=240+12或66(1+a)+120a=240﹣12,
    解得a=1或a=,
    答:轿车从B地到A地行驶过程中,轿车出发1小时或小时与货车相距12km.
    六.一次函数综合题(共1小题)
    10.(2023•黑龙江)如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.
    (1)求直线AD的解析式;
    (2)连接MN,求△MDN的面积S与运动时间t的函数关系式;
    (3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.

    【答案】(1)y=﹣;
    (2)S=;
    (3)存在,点Q的坐标是 或(6,4).
    【解答】(1)解:解方程x2﹣4x﹣12=0得:x1=6,x2=﹣2,
    ∴OC=6,
    ∵四边形AOCB是菱形,∠AOC=60°,
    ∴OA=OC=6,∠BOC=∠AOC=30°,
    ∴CD=OC•tan30°=6×=2,
    ∴D(6,2),
    过点A作AH⊥OC于H,

    ∵∠AOH=60°,
    ∴OH=OA=3,AH=OA•sin60°=6×=3,
    ∴A(3,3),
    设直线AD的解析式为y=kx+b(k≠0),
    代入A(3,3),D(6,2 )得:,
    解得:

    ∴直线AD的解析式为y=﹣;
    (2)解:由(1)知在Rt△COD中,,∠DOC=30°,
    ∴,∠EOD=90°﹣∠DOC=90°﹣30°=60°,
    ∵直线与y轴交于点E,
    ∴,
    ∴OE=OD,
    ∴△EOD是等边三角形,
    ∴∠OED=∠EDO=∠BDF=60°,,
    ∴∠OFE=30°=∠DOF,
    ∴,
    ①当点N在DF上,即 时,
    由题意得:,,
    过点N作NP⊥OB于P,

    则NP=DN×sin∠PDN=DN×sin60°=(4﹣2t)×=6﹣t,
    ∴S=DM×NP=(4﹣2t)×(6﹣t)=t2﹣9t+12;
    ②当点N在DE上,即 时
    由题意得:DM=OD﹣OM=,DN=2t﹣4,
    过点N作NT⊥OB于T,

    则NT=DN•sin∠NDT=DN•sin60°=(2t﹣4)×=,
    ∴S==;
    综上,S=;
    (3)解:存在,分情况讨论:
    ①如图,当AN是直角边时,则CN⊥EF,过点N作NK⊥CF于K,

    ∵∠NFC=30°,,
    ∴∠NCK=60°,,
    ∴CF=12﹣6=6,
    ∴,
    ∴CK=CN×cos60°=3×=,NK=CN×sin60°=3×=,
    ∴将点N向左平移个单位长度,再向下平移个单位长度得到点C,
    ∴将点A向左平移个单位长度,再向下平移个单位长度得到点Q,
    ∵,
    ∴Q(,);
    ②如图,当AN是对角线时,则∠ACN=90°,过点N作NL⊥CF于L,

    ∵OA=OC,∠AOC=60°,
    ∴△AOC是等边三角形,
    ∴∠ACO=60°,
    ∴∠NCF=180°﹣60°﹣90°=30°=∠NFC,
    ∴CL=FL=CF=3,
    ∴NL=CL•tan30°=3×=,
    ∴将点C向右平移3个单位长度,再向上平移 个单位长度得到点N,
    ∴将点A向右平移3个单位长度,再向上平移 个单位长度得到点Q,
    ∵,
    ∴Q(6,4);
    ∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是 或(6,4).
    七.待定系数法求二次函数解析式(共1小题)
    11.(2022•黑龙江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.
    (1)求抛物线的解析式;
    (2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.

    【答案】见试题解答内容
    【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),
    ∴,
    解得b=﹣2,c=﹣3,
    ∴抛物线的解析式:y=x2﹣2x﹣3;
    (2)存在,理由如下:
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴D点坐标为(1,﹣4),
    令x=0,则y=x2﹣2x﹣3=﹣3,
    ∴C点坐标为(0,﹣3),
    又∵B点坐标为(2,﹣3),
    ∴BC∥x轴,
    ∴S△BCD=×2×1=1,
    设抛物线上的点P坐标为(m,m2﹣2m﹣3),
    ∴S△PBC=×2×|m2﹣2m﹣3﹣(﹣3)|=|m2﹣2m|,
    当|m2﹣2m|=4×1时,
    解得m=1±,
    当m=1+时,m2﹣2m﹣3=1,
    当m=1﹣时,m2﹣2m﹣3=1,
    综上,P点坐标为(1+,1)或(1﹣,1).
    八.抛物线与x轴的交点(共1小题)
    12.(2023•黑龙江)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点.交y轴于点C.
    (1)求抛物线的解析式;
    (2)抛物线上是否存在一点P,使得S△PBC=S△ABC,若存在,请直接写出点P的坐标;若不存在,请说明理由.

    【答案】(1)y=﹣x2﹣2x+3;
    (2)(﹣2,3)或(3,﹣12).
    【解答】解:(1)由抛物线与x轴交于A(﹣3,0),B(1,0)两点,代入抛物线y=ax2+bx+3得:

    解得:;
    ∴抛物线的解析式为y=﹣x2﹣2x+3;

    (2)存在,理由如下:
    ∵A(﹣3,0),B(1,0),
    ∴AB=4,
    抛物线y=ax2+bx+3与y轴交于点C,
    令x=0,则y=3,
    ∴C点坐标为(0,3),OC=3,
    ∴S△ABC=AB•OC=×4×3=6,
    ∴S△PBC=S△ABC=3;
    作PE∥x轴交BC于E,如图:

    设BC的解析式为:y=kx+b,将B、C代入得:

    解得:,
    ∴BC的解析式为:y=﹣3x+3;
    设点P的横坐标为t,则P(t,﹣t2﹣2t+3),
    则E的横坐标为:﹣3x+3=﹣t2﹣2t+3,解得:x=,
    ∴E(,﹣t2﹣2t+3);
    ∴PE=﹣t=,
    ∴S△PBC=××3=3,
    解得:t=﹣2或3;
    ∴P点纵坐标为:﹣(﹣2)2﹣2×(﹣2)+3=3;或﹣(3)2﹣2×(3)+3=﹣12,
    ∴点P的坐标为(﹣2,3)或(3,﹣12).
    九.二次函数综合题(共1小题)
    13.(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.
    (1)求抛物线的解析式;
    (2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.

    【答案】(1)y=﹣x2﹣2x+3;
    (2)(﹣1﹣,2)或(﹣2,3).
    【解答】解:(1)∵抛物线y=ax2+bx+3过点A(1,0),B(﹣3,0),
    ∴,
    解得,
    ∴抛物线的解析式为:y=﹣x2﹣2x+3;
    (2)令x=0,y=3,
    ∴OC=OB=3,即△OBC是等腰直角三角形,
    ∵抛物线的解析式为:y=﹣x2﹣2x+3,
    ∴抛物线对称轴为:x=﹣1,
    ∵EN∥y轴,
    ∴△BEN∽△BCO,
    ∴,
    ∴,
    ∴EN=2,
    ①若△PQE∽△OBC,如图所示,过点P作PH⊥ED垂足为H,
    ∴∠PEH=45°,
    ∴∠PHE=90°,
    ∴∠HPE=∠PEH=45°,
    ∴PH=HE,
    ∴设点P坐标(x,﹣x﹣1+2),
    ∴代入关系式得,﹣x﹣1+2=﹣x2﹣2x+3,
    整理得,x2+x﹣2=0,
    解得,x1=﹣2,x2=1(舍),
    ∴点P坐标为(﹣2,3),

    ②若△EPQ∽△OCB,如图所示,
    设P(x,2),
    代入关系式得,2=﹣x2﹣2x+3,
    整理得,x2+2x﹣1=0,
    解得,(舍),
    ∴点P的坐标为(﹣1﹣,2),

    综上所述点P的坐标为(﹣1﹣,2)或(﹣2,3).
    一十.全等三角形的判定与性质(共1小题)
    14.(2022•黑龙江)△ABC和△ADE都是等边三角形.
    (1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);
    (2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
    (3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.


    【答案】见试题解答内容
    【解答】解:(2)PB=PA+PC,理由如下:
    如图②,在BP上截取BF=PC,连接AF,

    ∵△ABC、△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAC+∠CAD=∠CAD+∠DAE,
    即∠DAB=∠EAC,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,
    ∵AB=AC,BF=CP,
    ∴△BAF≌△CAP(SAS),
    ∴AF=AP,∠BAF=∠CAP,
    ∴∠BAC=∠PAF=60°,
    ∴△AFP是等边三角形,
    ∴PF=PA,
    ∴PB=BF+PF=PC+PA;
    (3)PC=PA+PB,理由如下:
    如图③,在PC上截取CM=PB,连接AM,

    同理得:△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,
    ∵AB=AC,PB=CM,
    ∴△AMC≌△APB(SAS),
    ∴AM=AP,∠BAP=∠CAM,
    ∴∠BAC=∠PAM=60°,
    ∴△AMP是等边三角形,
    ∴PM=PA,
    ∴PC=PM+CM=PA+PB.
    一十一.四边形综合题(共2小题)
    15.(2022•黑龙江)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA<OB),tan∠DAB=,动点P从点D出发以每秒1个单位长度的速度沿折线DC﹣CB向点B运动,到达B点停止.设运动时间为t秒,△APC的面积为S.
    (1)求点C的坐标;
    (2)求S关于t的函数关系式,并写出自变量t的取值范围;
    (3)在点P的运动过程中,是否存在点P,使△CMP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    【答案】见试题解答内容
    【解答】解:(1)方程x2﹣7x+12=0,
    解得:x1=3,x2=4,
    ∵OA<OB,
    ∴OA=3,OB=4,
    ∵tan∠DAB==,
    ∴OD=4,
    ∵四边形ABCD是平行四边形,
    ∴DC=AB=3+4=7,DC∥AB,
    ∴∠ODC=∠AOD=90°,
    ∴点C的坐标为(7,4);

    (2):①当0≤t<7时,
    由题意得:PC=7﹣t,
    ∴△APC的面积为S=PC•OD=(7﹣t)×4=14﹣2t;
    ②当7<t≤12时,过点A作AF⊥BC交CB的延长线于点F,

    ∵AD==5,四边形ABCD是平行四边形,
    ∴BC=AD=5,
    ∵S△ABC=AB•OD=CB•AF,
    ∴AB•OD=CB•AF,
    ∴7×4=5AF,
    ∴AF=,
    ∴△APC的面积为S=PC•AF=(t﹣7)×=t﹣;
    综上,S=;

    (3)∵BC=AD=5,M为BC的中点,C(7,4),B(4,0),
    ∴CM=,M(,2),
    ①当CM=CP时,

    ∵CM=,
    ∴CM=CP=,
    ∵CD=7,
    ∴DP=7﹣=,
    ∴点P的坐标为(,4);
    ②当CM=MP时,过点M作ME⊥CD于E,

    ∴PE=CE,
    ∵M(,2),C(7,4),
    ∴E(,4),CE=7﹣=,
    ∴PE=CE=,
    ∴DP=DE﹣PE=﹣=4,
    ∴点P的坐标为(4,4);
    ③当CP=MP时,过点P作PF⊥BC于F,

    ∴MF=CF=CM=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠DAB,
    ∴cos∠BCD=cos∠DAB=,
    ∴,即,
    ∴PC=,
    ∴DP=DC﹣PC=7﹣=,
    ∴点P的坐标为(,4);
    综上,点P的坐标为(4,4)或(,4)或(,4).
    16.(2021•黑龙江)如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE=,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.
    (1)求点B的坐标;
    (2)求S关于t的函数关系式,并写出自变量t的取值范围;
    (3)当点F落在线段OB上时,坐标平面内是否存在一点P,使以M、A、O、P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

    【答案】见试题解答内容
    【解答】解:(1)由x2﹣4x﹣5=0,解得x=5或﹣1,
    ∵OA是方程的根,
    ∴OA=5,
    ∴AB=OA=5,
    在Rt△ABE中,tan∠BAE==,AB=5,
    ∴BE=4,AE=3,
    ∴OE=OA+AE=5+3=8,
    ∴B(8,4).

    (2)如图1中,当点F落在OB上时,AM=t,DM=t.AD=t,

    ∵FM∥OA,
    ∴=,
    ∴=,
    ∴t=.

    如图2中,当0<t≤时,重叠部分是四边形ACFM,S=•(AC+FM)•DM=•(t+t﹣t)•t=t2.

    如图3中,当<t≤5时,重叠部分是五边形ACHGM,S=S梯形ACFM﹣S△FGH=t2﹣××[﹣(5﹣t)]2=﹣t2+t﹣.

    综上所述,S=.

    (3)如图4中,满足条件的点P如图所示:

    ∵点F落在OB上时,t=,
    ∵DM=FM=,AD=,AC=,
    ∴PF=PM﹣FM=5﹣=,OC=5﹣=,
    ∴F(,),M(,).
    ∴P(,),P″(﹣,﹣),P′(,).
    一十二.坐标与图形变化-平移(共1小题)
    17.(2022•黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣1),B(2,﹣5),C(5,﹣4).
    (1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1,画出两次平移后的△A1B1C1,并写出点A1的坐标;
    (2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2的坐标;
    (3)在(2)的条件下,求点A1旋转到点A2的过程中所经过的路径长(结果保留π).

    【答案】(1)作图见解析部分,A1(﹣5,3);
    (2)作图见解析部分,A2(2,4);
    (3).
    【解答】解:(1)如图,△A1B1C1即为所求,点A1的坐标(﹣5,3);
    (2)如图,△A2B2C1即为所求,点A2的坐标(2,4);
    (3)∵A1C1==5,
    ∴点A1旋转到点A2的过程中所经过的路径长==.

    一十三.作图-平移变换(共1小题)
    18.(2023•黑龙江)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).
    (1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1;
    (2)请画出△ABC关于y轴对称的△A2B2C2;
    (3)将△A2B2C2绕着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).

    【答案】(1)图形见解答;
    (2)图形见解答;
    (3).
    【解答】解:(1)如图所示,△A1B1C1即为所求;

    (2)如图所示,△A2B2C2即为所求;

    (3)将△A2B2C2绕着原点O顺时针旋转90°,得到△A3B3C3,如图,连接OC3交于D,连接OC2交于E,

    ∵A2(﹣2,﹣1),B2(﹣1,﹣2),C2(﹣3,﹣3),
    ∴OA2==,OB2==,OC2==3,
    ∴OA2=OB2=OD=OE=,
    由旋转得:OA2=OA3,OB2=OB3,OC2=OC3,A2C2=A3C3,∠C2OC3=DOE=90°,
    ∴△OA2C2≌△OA3C3(SSS),
    ∴=,
    ∴线段A2C2在旋转过程中扫过的面积=S﹣S扇形DOE=﹣=.
    一十四.作图-旋转变换(共1小题)
    19.(2021•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).
    (1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;
    (2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;
    (3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).

    【答案】(1)作图见解析部分,A1的坐标(﹣1,﹣3);
    (2)作图见解析部分,点A2的坐标(3,1);
    (3)π.
    【解答】解:(1)如图,△A1B1O即为所求,点A1的坐标(﹣1,﹣3);
    (2)如图,△A2B2O即为所求,点A2的坐标(3,1);
    (3)点A旋转到点A2所经过的路径长==π

    一十五.几何变换综合题(共1小题)
    20.(2021•黑龙江)在等腰△ADE中,AE=DE,△ABC是直角三角形,∠CAB=90°,∠ABC=∠AED,连接CD、BD,点F是BD的中点,连接EF.
    (1)当∠EAD=45°,点B在边AE上时,如图①所示,求证:EF=CD;
    (2)当∠EAD=45°,把△ABC绕点A逆时针旋转,顶点B落在边AD上时,如图②所示,当∠EAD=60°,点B在边AE上时,如图③所示,猜想图②、图③中线段EF和CD又有怎样的数量关系?请直接写出你的猜想,不需证明.

    【答案】(1)证明见解析部分.
    (2)如图②中,结论:EF=CD.如图③中,结论:EF=CD,证明见解析部分.
    【解答】(1)证明:如图①中,

    ∵EA=ED,∠EAD=45°,
    ∴∠EAD=∠EDA=45°,
    ∴∠AED=90°,
    ∵BF=FD,
    ∴EF=DB,
    ∵∠CAB=90°,
    ∴∠CAD=∠BAD=45°,
    ∵∠ABC=∠AED=45°,
    ∴∠ACB=∠ABC=45°,
    ∴AC=AB,
    ∴AD垂直平分线段BC,
    ∴DC=DB,
    ∴EF=CD.


    (2)解:如图②中,结论:EF=CD.

    理由:取CD的中点T,连接AT,TF,ET,TE交AD于点O.
    ∵∠CAD=90°,CT=DT,
    ∴AT=CT=DT,
    ∵EA=ED,
    ∴ET垂直平分线段AD,
    ∴AO=OD,
    ∵∠AED=90°,
    ∴OE=OA=OD,
    ∵CT=TD,BF=DF,
    ∴BC∥FT,
    ∴∠ABC=∠OFT=45°,
    ∵∠TOF=90°,
    ∴∠OTF=∠OFT=45°,
    ∴OT=OF,
    ∴AF=ET,
    ∵FT=TF,∠AFT=∠ETF,FA=TE,
    ∴△AFT≌△ETF(SAS),
    ∴EF=AT,
    ∴EF=CD.
    法二:如图,延长CA交DE的延长线于点G,连接BG.

    证明EF=BG,△CAD≌△BAG,推出CD=BG,可得结论.

    如图③中,结论:EF=CD.

    理由:取AD的中点O,连接OF,OE.
    ∵EA=ED,∠AED=60°,
    ∴△ADE是等边三角形,
    ∵AO=OD,
    ∴OE⊥AD,∠AEO=∠OED=30°,
    ∴tan∠AEO==,
    ∴=,
    ∵∠ABC=∠AED=30°,∠BAC=90°,
    ∴AB=AC,
    ∵AO=OD,BF=FD,
    ∴OF=AB,
    ∴=,
    ∴=,
    ∵OF∥AB,
    ∴∠DOF=∠DAB,
    ∵∠DOF+∠EOF=90°,∠DAB+∠DAC=90°,
    ∴∠EOF=∠DAC,
    ∴△EOF∽△DAC,
    ∴==,
    ∴EF=CD.
    解法二:过点A作AG⊥AD交DE的延长线于点G.

    证明EF=BG,△CAD∽△BAG,相似比为1:可得结论.
    一十六.相似三角形的判定与性质(共1小题)
    21.(2023•黑龙江)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=FG.
    若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②;若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③;其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.

    【答案】如图②;FH=FG,证明见解析;如图③;FH=FG,证明见解析.
    【解答】解:如图②;FH=FG,
    证明:连接AH,CE,AF,
    ∵△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,F,H分别是DE,BC的中点,
    ∴AH⊥BC,AF⊥DE,,
    ∴∠CAH=∠EAF=45°,
    ∴∠HAF=∠EAC,,
    ∴△AHF∽△ACE,
    ∴,
    ∴CE=FH,
    ∵点F,G分别是DE,DC的中点,
    ∴CE=2FG,
    ∴FH=FG;
    如图③;FH=FG,
    证明:连接AH,CE,AF,
    ∵△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,
    ∴∠AFD=∠ADE=∠ACB=∠B=30°,
    ∵点F,H分别是DE,BC的中点,
    ∴AH⊥BC,AF⊥DE,∠CAH=∠EAF=,
    ∴∠HAF=∠EAC,,
    ∴△AHF∽△ACE,
    ∴=,
    ∴CE=2FH,
    ∵点F,G分别是DE,DC的中点,
    ∴CE=2FG,
    ∴FH=FG;

    一十七.条形统计图(共3小题)
    22.(2023•黑龙江)某中学开展主题为“垃圾分类,绿色生活”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校团委在校园内随机抽取了部分学生进行问卷调查,将他们的得分按A:优秀,B:良好,C:合格,D:不合格四个等级进行统计,并绘制了如下不完整的条形统计图和扇形统计图.
    (1)这次学校抽查的学生人数是  40人 ;
    (2)将条形图补充完整;
    (3)扇形统计图中C组对应的扇形圆心角度数是  90 °;
    (4)如果该校共有2200人,请估计该校不合格的人数.

    【答案】(1)40人;
    (2)见解答;
    (3)90;
    (4)220人.
    【解答】解:(1)这次学校抽查的学生人数是:12÷30%=40(人),
    故答案为:40人;
    (2)C等级的人数为:40﹣12﹣14﹣4=10(人),
    补全条形图如下:

    (3)360°×=90°,
    故答案为:90;
    (4)2200×=220(人),
    答:估计该校不合格的人数约220人.
    23.(2022•黑龙江)为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x小时,其中的分组情况是:
    A组:x<8.5
    B组:8.5≤x<9
    C组:9≤x<9.5
    D组:9.5≤x<10
    E组:x≥10
    根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
    (1)本次共调查了  100 名学生;
    (2)补全条形统计图;
    (3)在扇形统计图中,求D组所对应的扇形圆心角的度数;
    (4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?

    【答案】见试题解答内容
    【解答】解:(1)20÷20%=100(名),
    即本次共调查了100名学生,
    故答案为:100;
    (2)选择E的学生有:100×15%=15(人),
    选择A的学生有:100﹣20﹣40﹣20﹣15=5(人),
    补全的条形统计图如右图所示;
    (3)360°×=72°,
    即D组所对应的扇形圆心角的度数是72°;
    (4)1500×=375(人),
    答:估计该校睡眠时间不足9小时的学生有375人.

    24.(2021•黑龙江)为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩分成A、B、C、D、E五个等级进行统计,并绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:

    (1)本次调查中共抽取  100 名学生;
    (2)补全条形统计图;
    (3)在扇形统计图中,求B等级所对应的扇形圆心角的度数;
    (4)若该校有1200名学生参加此次竞赛,估计这次竞赛成绩为A和B等级的学生共有多少名?
    【答案】见试题解答内容
    【解答】解:(1)26÷26%=100(名),
    故答案为:100;
    (2)D等级所占的百分比为:10÷100×100%=10%,
    则B等级所占的百分比为:1﹣26%﹣20%﹣10%﹣4%=40%,
    故B、C等级的学生分别为:100×40%=40(名),100×20%=20(名),
    补全条形图如下,

    (3)B等级所对应的扇形圆心角的度数为:360°×40%=144°;
    (4)1200×=792(名),
    答:估计这次竞赛成绩为A和B等级的学生共有792名.

    相关试卷

    黑龙江省鸡西市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份黑龙江省鸡西市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了之间的函数关系对应的图象,两点等内容,欢迎下载使用。

    黑龙江省鸡西市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份黑龙江省鸡西市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了之间的函数关系对应的图象,两点等内容,欢迎下载使用。

    黑龙江省鸡西市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类:

    这是一份黑龙江省鸡西市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共24页。试卷主要包含了先化简,再求值,÷,其中m=tan60°﹣1等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map