考点09 指数与指数函数6种常见考法归类-【考点通关】备战2024年高考数学一轮题型归纳与解题策略(新高考地区专用)(原卷版)
展开
这是一份考点09 指数与指数函数6种常见考法归类-【考点通关】备战2024年高考数学一轮题型归纳与解题策略(新高考地区专用)(原卷版),共19页。试卷主要包含了指数幂的运算,指数型函数的定义域和值域问题,指数函数的图象及应用,指数函数的性质及应用,指数函数的综合问题,指数函数的实际应用等内容,欢迎下载使用。
考点09 指数与指数函数6种常见考法归类
考点一 指数幂的运算
考点二 指数型函数的定义域和值域问题
考点三 指数函数的图象及应用
(一)判断指数函数图象的形状
(二)根据指数型函数图象判断参数的范围
(三)指数型函数恒过定点问题
(四)指数函数图象应用
考点四 指数函数的性质及应用
(一)指数函数的单调性
(1)判断函数的单调性
(2)比较指数式的大小
(3)解不等式
(4)由函数的单调性求参数
(二)指数函数的最值
(1)求函数的最值
(2)根据最值求参数
(3)函数的最值与不等式的综合问题
(三)指数函数的奇偶性
(1)已知函数奇偶性求值
(2)由函数的奇偶性求解析式
(3)已知函数的奇偶性求参数
(4)函数的奇偶性与单调性的综合
考点五 指数函数的综合问题
考点六 指数函数的实际应用
1、正确区分与()n
(1)( )n已暗含了有意义,根据n的奇偶性可知a的范围.
(2)中的a可以是全体实数,的值取决于n的奇偶性.
2、有限制条件根式的化简
(1)有限制条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.
(2)有限制条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.
3、根式与分数指数幂互化的规律
(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.
(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.
4、指数幂运算的常用技巧
指数幂运算的一般原则:①指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算. ②先乘除后加减,负指数幂化成正指数幂的倒数. ③底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. ④运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.
5、利用整体代换法求分数指数幂
(1)整体代换法是数学变形与计算常用的技巧方法,分析观察条件与结论的结构特点,灵活运用恒等式是关键.
(2)利用整体代换法解决分数指数幂的计算问题,常常运用完全平方公式及其变形公式.
x2+x-2=(x±x-1)2 ∓2,x+x-1=(±)2∓2,+=(±)2∓2.
6、判断一个函数是否为指数函数的方法
(1)底数的值是否符合要求.
(2)ax前的系数是否为1.
(3)指数是否符合要求.
7、求指数函数的解析式或函数值
(1)求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的参数,从而得到函数的解析式,其中掌握指数函数的概念是解决这类问题的关键.
(2)求指数函数的函数值的关键是掌握指数函数的解析式.
8、指数函数的图象和性质
图象
性质
①定义域,值域
②,即时,,图象都经过点
③,即时,等于底数
④在定义域上是单调减函数
在定义域上是单调增函数
⑤时,;时,
时,;时,
⑥既不是奇函数,也不是偶函数
注:指数函数常用技巧
(1)指数函数y=ax(a>0,且a≠1)的图象以x轴为渐近线;y=ax+b恒过定点(0,1+b),且以y=b为渐近线.
(2)当底数大小不定时,必须分“”和“”两种情形讨论.
(3)当时,,;的值越小,图象越靠近轴,递减的速度越快.
当时,;的值越大,图象越靠近轴,递增速度越快.
(4)指数函数与的图象关于轴对称.
9、指数函数图象的画法
画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.
10、指数函数的图象与底数大小的比较
如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b>0.在第一象限内,指数函数y=ax(a>0,且a≠1)的图象越高,底数越大.
11、函数y=af(x)定义域、值域的求法
(1)定义域:形如y=af(x)形式的函数的定义域是使得f(x)有意义的x的取值集合.
(2)值域:①换元,令t=f(x);
②求t=f(x)的定义域x∈D;
③求t=f(x)的值域t∈M;
④利用y=at的单调性求y=at,t∈M的值域.
注意:(1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集.
(2)当指数型函数的底数含字母时,在求定义域、值域时要注意分类讨论.
12、处理函数图象问题的策略
(1)抓住特殊点:指数函数的图象过定点(0,1),求指数型函数图象所过的定点时,只要令指数为0,求出对应的x,y的值,即可得函数图象所过的定点.
(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移).
(3)利用函数的性质:奇偶性与单调性.
注:①对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到. 特别地,当底数a与1的大小关系不确定时应注意分类讨论. ②有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.
13、比较幂值大小的3种类型及处理方法
14、简单的指数不等式的解法
利用指数函数的单调性,将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.
(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.
(2)解不等式af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即af(x)>ag(x)⇒f(x)>g(x)(a>1)或f(x)
相关试卷
这是一份考点09 指数与指数函数6种常见考法归类-备战高考数学一轮题型归纳与解题策略(新高考地区专用),文件包含考点09指数与指数函数6种常见考法归类原卷版docx、考点09指数与指数函数6种常见考法归类解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
这是一份考点13 函数与方程11种常见考法归类-【考点通关】备战2024年高考数学一轮题型归纳与解题策略(新高考地区专用)(原卷版),共16页。试卷主要包含了求函数的零点,确定零点所在的区间,判断函数零点个数,已知函数零点求值,与零点相关的比较大小问题,求零点的和,嵌套函数的零点问题,函数零点的综合应用等内容,欢迎下载使用。
这是一份考点12 函数的图象9种常见考法归类(原卷版)-【考点通关】备战2024年高考数学一轮题型归纳与解题策略(新高考地区专用),共17页。试卷主要包含了作图,函数图象的变换,根据实际问题作函数的图象,给出函数确定图象,给出图象确定函数,由函数图象确定参数范围,利用图象研究函数的性质,利用图象解不等式等内容,欢迎下载使用。