![八年级数学上册专题11.19 三角形几何模型-燕尾角(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版)第1页](http://img-preview.51jiaoxi.com/2/3/14805901/0-1693930883241/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级数学上册专题11.19 三角形几何模型-燕尾角(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版)第2页](http://img-preview.51jiaoxi.com/2/3/14805901/0-1693930883312/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级数学上册专题11.19 三角形几何模型-燕尾角(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版)第3页](http://img-preview.51jiaoxi.com/2/3/14805901/0-1693930883327/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:(专项练习)-2022-2023学年八年级数学上册专项讲练(人教版)
- 八年级数学上册专题11.17 三角形几何模型-8字型(基础篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题11.18 三角形几何模型-8字型(巩固篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题11.20 三角形几何模型-双角平分线(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题11.21 三角形几何模型-双角平分线(基础篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
- 八年级数学上册专题11.22 三角形几何模型-双角平分线(培优篇)(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版) 试卷 2 次下载
八年级数学上册专题11.19 三角形几何模型-燕尾角(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版)
展开
这是一份八年级数学上册专题11.19 三角形几何模型-燕尾角(专项练习)-2022-2023学年八年级数学上册基础知识专项讲练(人教版),共20页。
专题11.19 三角形几何模型-燕尾角(专项练习)【知识模型】如图:这样的图形称之为“燕尾角模型”结论:∠BDC=∠A+∠B+∠C【模型证明】1.如图所示,已知四边形,求证.证法1:如图一所示,连接BC. 在中,,即.在中,,;图一证法2:如图二所示,连接AD并延长. 是的外角,.同理,..即. 图二证法3:如图所示,延长BD,交AC于点E.是的外角,.是的外角,.. 图三【点拨】本题考查了三角形的外角性质:解题的关键是知道三角形的任一外角等于与之不相邻的两内角的和.也考查了三角形内角和定理.一、单选题1.如图所示,∠A+∠B+∠C+∠D+∠E的结果为( )A.90° B.360° C.180° D.无法确定2.如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为( )A.115° B.120° C.125° D.130°3.在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果,,那么的度数是( ).A. B. C. D.4.如图,已知在中,,现将一块直角三角板放在上,使三角板的两条直角边分别经过点,直角顶点D落在的内部,则( ).A. B. C. D.二、填空题5.如图,∠A+∠B+∠C+∠D+∠E=_____.6.如图,则∠A+∠B+∠C+∠D+∠E的度数是__.7.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=__.8.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=__.9.如图,若,则____________.10.如图,在中,,,平分,平分,则______.三、解答题11.如图(1)所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图(2),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、图(1)XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°;②如图(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;(写出解答过程)③如图(4),∠ABD,∠ACD的10等分线相交于点G1、G2、G9,若∠BDC=140°,∠BG1C=77°,则∠A的度数=__________°. 12.如图,已知分别交的边、于、,交的延长线于,,,,求的度数. 13.如图,是的平分线,CH是的平分线,与CH交于点,若,,求的度数. 14.如图,、分别平分和,若,,求的度数. 15.如图,是上一点,是上一点,,相交于点,,,,求的度数. 16.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,,则__________;②如图3,__________;(2)拓展应用:①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________;②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________;③如图6,、的角平分线、交于点D,已知,则__________;④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________. 17.如图,中,(1)若、的三等分线交于点、,请用表示、;(2)若、的等分线交于点、(、依次从下到上),请用表示,. 参考答案1.C解:如图,连接BC,∵∠D+∠E+∠DOE=∠BOC+∠OCB+∠BOC=180°,∠DOE=∠BOC,∴∠D+∠E=∠OBC+∠OCB,又∵∠A+∠ABO+∠ACO+∠OBC+∠OCB=180°,∴∠A+∠ABO+∠ACO+∠D+∠E=180°.故选C.2.D解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°-50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.3.A【分析】延长BE交CF的延长线于O,连接AO,根据三角形内角和定理求出再利用邻补角的性质求出,再根据四边形的内角和求出,根据邻补角的性质即可求出的度数.解:延长BE交CF的延长线于O,连接AO,如图,∵ ∴ 同理得∵ ∴ ∵ ∴ ∴ ∴,故选:A.【点拨】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:.4.C【分析】由三角形内角和定理可得∠ABC+∠ACB+∠A=180°,即∠ABC+∠ACB=180-∠A=140°,再说明∠DBC+∠DCB=90°,进而完成解答.解:∵在△ABC中,∠A=40°∴∠ABC+∠ACB=180-∠A=140°∵在△DBC中,∠BDC=90°∴∠DBC+∠DCB=180°-90°=90°∴40°-90°=50°故选C.【点拨】本题主要考查三角形内角和定理,灵活运用三角形内角和定理成为解答本题的关键.5.##180度【分析】利用三角形的外角的性质将五个角转化为三角形的三个角的和即可.解:如图:利用三角形的外角的性质得:,,所以,故答案为:.【点拨】本题考查了多边形的内角与外角及三角形的内角和与外角和的知识,解题的关键是能够正确的将几个角转化为三个角,难度不大.6.180°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【点拨】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.7.720°【分析】根据三角形的外角等于与它不相邻的两个内角的和,可得∠2与∠H、∠G的关系,∠1与∠2、∠D的关系,根据多边形的内角和公式,可得答案.解:如图:由三角形的外角等于与它不相邻的两个内角的和,得∠2=∠H+∠G,∠1=∠2+∠D,∠1=∠H+∠G+∠D,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠A+∠B+∠C+∠E+∠F+∠H+∠G+∠D=180°×(6-2)=270°.故答案为:720°.【点拨】本题考查了多边形的内角与外角,先求出∠1=∠H+∠G+∠D,再求出多边形的内角和.8.360°【分析】连接CF,根据三角形的外角得到由三角形外角的性质可得:∠2=∠G+∠H,∠3=∠A+∠B,∠1=∠D+∠E=∠4+∠5,根据四边形的内角和为360°,可得:∠2+∠3+∠GFE+∠4+∠5+∠DCB=360°即∠G+∠H+∠A+∠B+∠GFE+∠D+∠E+∠DCB=360°.解:如图,连接FC,由三角形外角的性质可得:∠2=∠G+∠H,∠3=∠A+∠B,∠1=∠D+∠E=∠4+∠5,根据四边形的内角和为360°,可得:∠2+∠3+∠GFE+∠4+∠5+∠DCB=360°即∠G+∠H+∠A+∠B+∠GFE+∠D+∠E+∠DCB=360°,故答案为360°.【点拨】本题考查了三角形的内角与外角,解决本题的关键是熟记三角形的外角的性质.9.230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.解:如图∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C, ∴∠E+∠D+∠C=115°, ∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B, ∴∠A+∠B+∠F=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=230°, 故答案为:230°.【点拨】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.10.【分析】先根据角平分线的性质求出的度数,再利用三角形内角和定理即可求解.解:∵平分,平分,∴,∴.【点拨】本题考查了角平分线的性质及三角形内角和定理.熟练掌握三角形内角和定理是解题的关键.11.(1)∠BDC=∠A+∠B+∠C,详见分析;(2)①40;②∠DCE=90°;③70【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,∵∠A=50°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣50°=40°.故答案是:40;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∵DC平分∠ADB,EC平分∠AEB, ∴∠ADC=∠ADB,∠AEC=∠AEB∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;③由②知,∠BG1C=(∠ABD+∠ACD)+ ∠A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴(140﹣x)+x=77,∴14﹣x+x=77,∴x=70,∴∠A为70°.故答案是:70.【点拨】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.12..【分析】根据三角形的内角和定理即可求解解:在中,=--,∴∠DEC=【点拨】本题主要考查三角形内角和定理和外角的性质,掌握三角形内角和为180°及三角形的一个外角等于不相邻两个内角的和是解题的关键.13..【分析】根据三角形的外角的性质得出燕尾角的基本图形的结论得出∠BDC、∠BOC,在根据角平分线的性质即可得出解:由燕尾角的基本图形与结论可得,①②是的平分线,是的平分线,.①-②得,.【点拨】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.14..【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=(∠B+∠D)=(42°+54°)=48°;【点拨】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.15..【分析】根据三角形的外角性质先求出的度数,再利用三角形内角和定理即可注出的度数.解:在△ADC中,,在在△BDF中,.【点拨】本题考查了三角形内角和定理及三角形外角的性质.熟练找出三角形内角与外角的关系是解题的关键.16.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得;②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入计算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)计算可得;④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论.解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-(∠ABO+∠ACO)=∠BOC-(∠BOC-∠A)=∠BOC-(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-(∠BOC-∠A)=120°-(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)=180°-(120°-44°)=142°;④∠BOD=∠BOC=∠B+∠D+∠BAC,∠BOC=∠B+∠C+∠BAC,联立得:∠B-∠C+2∠D=0.【点拨】本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质.17.(1),;(2),.【分析】(1)根据三角形内角和可得,再根据、的三等分线交于点、,可得然后根据三角形内角和定理即可用含表示、;(2)根据(1)中所体现的规律解答即可.解:(1)∵,∴,∵、的三等分线交于点、,∴∴,;(2)由(1)可知,.【点拨】本题考查了三角形内角和定理及角的n等分线的性质.熟练应用三角形内角和定理求角的度数是解题的关键.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)