专题09 压轴大题分类练(三大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版)
展开专题09 压轴大题分类练(三大考点)
一.新定义(热点题型)
1.在数轴上,把原点记作点O,表示数1的点记作点A.对于数轴上任意一点P(不与点O,点A重合),将线段PO与线段PA的长度之比定义为点P的特征值,记作,即,例如:当点P是线段OA的中点时,因为PO=PA,所以1.
(1)如图,点P1,P2,P3为数轴上三个点,点P1表示的数是,点P2与P1关于原点对称.
① ;
②比较,,的大小 (用“<”连接);
(2)数轴上的点M满足OMOA,求;
(3)数轴上的点P表示有理数p,已知100且为整数,则所有满足条件的p的倒数之和为 .
2.对于点M,N,给出如下定义:在直线MN上,若存在点P,使得MP=kNP(k>0),则称点P是“点M到点N的k倍分点”.
例如:如图,点Q1,Q2,Q3在同一条直线上,Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的倍分点,点Q1是点Q3到点Q2的3倍分点.
已知:在数轴上,点A,B,C分别表示﹣4,﹣2,2.
(1)点B是点A到点C的 倍分点,点C是点B到点A的 倍分点;
(2)点B到点C的3倍分点表示的数是 ;
(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.
3.知识背景:已知a,b为有理数,规定:f(a)=|a﹣2|,g(b)=|b+3|,例如:f(﹣3)=|﹣3﹣2|=5,g(﹣2)=|﹣2+3|=1.
知识应用:
(1)若f(a)+g(b)=0,求3a﹣5b的值;
(2)求f(a﹣1)+g(a﹣1)的最值;
知识迁移:若有理数a,b,c满足|a﹣b+c+3|=a+b+c﹣3,且关于x的方程ax﹣2c=2a﹣cx有无数解,f(2b﹣4)≠0,求|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|的值.
4.如图,点A、O、C、B为数轴上的点,O为原点,A表示的数是﹣8,C表示的数是2,B表示的数是6.我们将数轴在点O和点C处各弯折一次,弯折后CB与AO处于水平位置,线段OC处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记为“折坡数轴”拉直后点A和点B的距离:即AO+OC+CB,其中AO、OC、CB代表线段的长度.
(1)若点T为“折坡数轴”上一点,且16,请求出点T所表示的数;
(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P从点A处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O,再上坡移动,当移到点C时,立即掉头返回(掉头时间不计),在点P出发的同时,动点Q从点B处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C,再下坡到点O,然后再沿OA方向移动,当点P重新回到点A时所有运动结束,设点P运动时间为t秒,在移动过程中:
①点P在第 秒时回到点A;
②当t= 时,2.(请直接写出t的值)
5.对数轴上的点和线段,给出如下定义:点M是线段a的中点,点N是线段b的中点,称线段MN的长度为线段a与b的“中距离”.
已知数轴上,线段AB=2(点A在点B的左侧),EF=6(点E在点F的左侧).
(1)当点A表示1时,
①若点C表示﹣2,点D表示﹣1,点H表示4,则线段AB与CD的“中距离”为3.5,线段AB与CH的“中距离”为 ;
②若线段AB与EF的“中距离”为2,则点E表示的数是 .
(2)线段AB、EF同时在数轴上运动,点A从表示1的点出发,点E从原点出发,线段AB的速度为每秒1个单位长度,线段EF的速度为每秒2个单位长度,开始时,线段AB、EF都向数轴正方向运动;当点E与点B重合时,线段EF随即向数轴负方向运动,AB仍然向数轴正方向运动.运动过程中,线段AB、EF的速度始终保持不变.
设运动时间为t秒.
①当t=2.5时,线段AB与EF的“中距离”为 ;
②当线段AB与EF的“中距离”恰好等于线段AB的长度时,求t的值.
6.我们将数轴上点P表示的数记为xP.对于数轴上不同的三个点M,N,T,若有xN﹣xT=k(xM﹣xT),其中k为有理数,则称点N是点M关于点T的“k星点”.已知在数轴上,原点为O,点A,点B表示的数分别为xA=﹣2,xB=3.
(1)若点B是点A关于原点O的“k星点”,则k= ;若点C是点A关于点B的“2星点”,则xC= ;
(2)若线段AB在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB的中点D.是否存在某一时刻,使得点D是点A关于点O的“﹣2星点”?若存在,求出线段AB的运动时间;若不存在,请说明理由;
(3)点Q在数轴上运动(点Q不与A,B两点重合),作点A关于点Q的“3星点”,记为A',作点B关于点Q的“3星点”,记为B'.当点Q运动时,QA'+QB'是否存在最小值?若存在,求出最小值及相应点Q的位置;若不存在,请说明理由.
7.【阅读理解】
射线OC是∠AOB内部的一条射线,若∠COA∠BOC,则我们称射线OC是射线OA的伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD∠AOD,称射线OD是射线OB的伴随线.
【知识运用】
(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM= °,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC的度数是 .(用含α的代数式表示)
(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.
①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.
②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.
8.如图1,对于线段AB和∠A′OB′,点C是线段AB上的任意一点,射线OC′在∠A′OB′内部,如果,则称线段AC是∠A′OC′的伴随线段,∠A′OC′是线段AC的伴随角.例如:AB=10,∠A′OB′=100°,若AC=3,则线段AC的伴随角∠A′OC′=30°.
(1)当AB=8,∠A′OB′=130°时,若∠A′OC′=65,试求∠A′OC′的伴随线段AC的长.
(2)如图2,对于线段AB和∠A′OB′,AB=6,∠A′OB′=120°.若点C是线段AB上任一点,E,F分别是线段AC,BC的中点,∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,则在点C从A运动到B的过程中(不与A,B重合),∠E′OF′的大小是否会发生变化?如果会,请说明理由;如果不会,请求出∠E′OF′的大小.
(3)如图3,已知∠AOC是任意锐角,点M,N分别是射线OA,OC上的任意一点,连接MN,∠AOC的平分线OD与线段MN相交于点Q.对于线段MN和∠AOC,线段MP是∠AOD的伴随线段,点P和点Q能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.
二.数形结合之数轴与方程(经典题型)
9.我们知道数轴上两点间的距离等于这两点所表示数的差的绝对值,例如:点A,B在数轴上分别对应的数为a,b,则A,B两点间的距离表示为AB=|a﹣b|.
根据以上知识解决问题:
(1)如图1所示,在数轴上点E,F表示的数分别为﹣5,3,则EF= ;
(2)①如图2所示,点P表示数x,点M表示数﹣2,点N表示数2x+14,且MN=2PM,求:点P和点N表示的数.
②在上述①的条件下,数轴上是否存在点Q.使PQ+QNQM?若存在,请直接写出点Q所表示的数;若不存在,请说明理由.
10.如图,数轴上A,B两点对应的数分别是﹣20和10,P,Q两点同时从原点出发,P以每秒2个单位长度的速度沿数轴向左匀速运动,Q以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点B后立即返回,以相同的速度沿数轴向左运动.点P到达点A时,P,Q两点同时停止运动.设运动时间为t秒.
(1)当t=1时,线段PQ= ;
(2)当PQ=5时,求t的值;
(3)在P,Q两点运动的过程中,若点A,点P,点Q三点中的一个点是另外两个点为端点的线段的中点,直接写出t的值.
11.规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为[A,B]的“三倍距点”,当CB=3CA时,我们称C为[B,A]的“三倍距点”.点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.
(1)a= ,b= ;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C所表示的数为 ;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒.当点B为M,N两点的“三倍距点”时,求t的值.
12.已知,C,D为线段AB上两点,C在D的左边,AB=a,CD=b,且a,b满足(a﹣120)2+|4b﹣a|=0.
(1)a= ,b= ;
(2)如图1,若M是线段AD的中点,N是线段BC的中点,求线段MN的长;
(3)线段CD在线段AB上从端点D与点B重合的位置出发,以3cm/s的速度沿射线BA的方向运动,同时点P以相同速度从点A出发沿射线AB的方向运动,当点P与点D相遇时,点P原路返回且速度加倍,线段CD的运动状态不变,直到点C到达点A时线段CD和点P同时停止运动,设运动时间为ts,在此运动过程中,当t为多少s时线段PC=10cm?
13.如图,在数轴上点A表示的数是a,点B表示的数是b,数轴上有一点C,且AC=2CB,a、b满足|a+4|+(b﹣11)2=0.
(1)a= ,b= ;
(2)求点C表示的数;
(3)点P从点A出发,以每秒4个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒3个单位长度的速度沿数轴向左运动,若AP+BQ=2PQ,求t的值.
三.数形结合之角的动边与方程(超难题型)
14.如图,∠AOD=130°,∠BOC:∠COD=1:2,∠AOB是∠COD补角的.
(1)∠COD= ;
(2)平面内射线OM满足∠AOM=2∠DOM,求∠AOM的大小;
(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.
15.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.
(1)求∠MON的度数.
(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).
(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示).
16.如图,∠AOB=90°,∠COD=60°.
(1)若OC平分∠AOD,求∠BOC的度数;
(2)若∠BOC∠AOD,求∠AOD的度数;
(3)若同一平面内三条射线OT、OM、ON有公共端点O,且满足∠MOT∠NOT或者∠NOT∠MOT,我们称OT是OM和ON的“和谐线”.若射线OP从射线OB的位置开始,绕点O按逆时针方向以每秒12°的速度旋转,同时射线OQ从射线OA的位置开始,绕点O按顺时针方向以每秒9°的速度旋转,射线OP旋转的时间为t(单位:秒),且0<t<15,求当射线OP为两条射线OA和OQ的“和谐线”时t的值.
17.如图1,OA⊥OB,∠COD=60°.
(1)若∠BOC∠AOD,求∠AOD的度数;
(2)若OC平分∠AOD,求∠BOC的度数;
(3)如图2,射线OB与OC重合,若射线OB以每秒15°的速度绕点O逆时针旋转,同时射线OC以每秒10°的速度绕点O顺时针旋转,当射线OB与OA重合时停止运动.设旋转的时间为t秒,请直接写出图中有一条射线平分另外两条射线所夹角时t的值.
18.一副三角尺(分别含45°,45°,90°和30°,60°,90°)按如图1所示摆放在量角器上,边PD与量角器0°刻度线重合,边AP与量角器180°刻度线重合(∠APB=45°,∠DPC=30°),将三角尺ABP绕量角器中心点P以每秒15°的速度顺时针旋转,当边PB与0°刻度线重合时停止运动,设三角尺ABP的运动时间为t.
(1)当t=3时,边PB经过的量角器刻度线对应的度数是 度;
(2)如图2,若在三角尺ABP开始旋转的同时,三角尺PCD也绕点P以每秒5°的速度逆时针旋转,当三角尺ABP停止旋转时,三角尺PCD也停止旋转,∠MPN=180°.
①用含t的代数式表示:∠NPD= ;∠MPB= ;当t为何值时,∠BPC=5°?
②从三角尺ABP与三角尺PCD第一对直角边和斜边重叠开始起到另一对直角边和斜边重叠结束止,经过的时间t为 秒.
19.如图1,已知∠AOC=140°,∠BOC的余角比它的补角的少10°.
(1)求∠BOC的度数;
(2)如图1,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,在旋转过程中,保持射线OP始终在∠BOA的内部,当∠POC=10°时,求旋转时间.
(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O以4度/秒的速度逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,当这两条射线重合于射线OE处(OE在∠DOC的内部)时,,求x的值.(注:本题中所涉及的角都是小于180°的角)
20.如图1,OB、OC是∠AOD内部两条射线.
(1)若∠AOD和∠BOC互为补角,且∠AOD=2∠BOC,求∠AOD及∠BOC的度数;
(2)如图2,若∠AOD=2∠BOC,在∠AOD的外部分别作∠COD、∠AOB的余角∠DOM及∠AON,请写出∠DOM、∠AON、∠BOC之间的数量关系,并说明理由;
(3)如图3,已知∠AOD=120°,射线OE平分∠AOD,若将OB绕O点从OA出发以每秒6°逆时针旋转,OC绕O点从OD出发以每秒5°顺时针旋转,OB、OC同时运动;当OC运动一周回到OD时,OB、OC同时停止运动.若运动t(t>0)秒后,OE恰好是∠BOC的四等分线,则此时t的值为 (直接写出答案).
专题13 压轴大题精选分类练-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版): 这是一份专题13 压轴大题精选分类练-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版),文件包含专题13压轴大题精选分类练原卷版docx、专题13压轴大题精选分类练解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题12 选择压轴题分类练(七大考点)-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版): 这是一份专题12 选择压轴题分类练(七大考点)-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版),文件包含专题12选择压轴题分类练七大考点原卷版docx、专题12选择压轴题分类练七大考点解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
专题08 代数式重难考点分类练(七大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版): 这是一份专题08 代数式重难考点分类练(七大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版),文件包含七年级数学上册专题08代数式重难考点分类练七大考点期末真题精选原卷版docx、七年级数学上册专题08代数式重难考点分类练七大考点期末真题精选解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。