![七年级数学上册专题4.1 平面图形中的计数问题(强化)(原卷版)第1页](http://img-preview.51jiaoxi.com/2/3/14806674/0-1693963589900/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![七年级数学上册专题4.1 平面图形中的计数问题(强化)(原卷版)第2页](http://img-preview.51jiaoxi.com/2/3/14806674/0-1693963589937/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![七年级数学上册专题4.1 平面图形中的计数问题(强化)(原卷版)第3页](http://img-preview.51jiaoxi.com/2/3/14806674/0-1693963589958/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学人教版七年级上册第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形同步训练题
展开这是一份初中数学人教版七年级上册第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形同步训练题,共14页。
如图,以为一个端点的线段共有
A.1条B.2条C.3条D.4条
济青高铁北线,共设有5个不同站点,要保证每两个站点之间都有高铁可乘,需要印制不同的火车票
A.20种B.42种C.10种D.84种
观察下列图形,并阅读图形下面的相关文字:
①两直线相交,最多1个交点;②三条直线相交最多有3个交点;③四条直线相交最多有6个交点;那么十条直线相交交点个数最多有
A.40个B.45个C.50个D.55个
如图所示,从一点出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引为大于等于2的整数)条射线,则会得到多少个角?如果时,检验你所得的结论是否正确.
【题组训练】
1.阅读:在直线上有个不同的点,则此图中共有多少条线段?通过分析、画图尝试得如下表格:
问题:
(1)把表格补充完整;
(2)根据上述得到的信息解决下列问题:
①某学校七年级共有20个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?
②乘火车从站出发,沿途经过10个车站方可到达站,那么在,两站之间需要安排多少种不同的车票?
2.观察图①,由点和点可确定 条直线;
观察图②,由不在同一直线上的三点、和最多能确定 条直线;
(1)动手画一画图③中经过、、、四点的所有直线,最多共可作 条直线;
(2)在同一平面内任三点不在同一直线的五个点最多能确定 条直线、个点最多能确定 条直线.
3.在一条直线上取两上点、,共得几条线段在一条直线上取三个点、、,共得几条线段在一条直线上取、、、四个点时,共得多少条线段在一条直线上取个点时,共可得多少条线段?
4.平面内有三点、、,过其中任意两点画直线,有如下两种情况:
(1)若平面内有四个点、、、,过其中任意两点画直线,有多少种情况?请画图说明;
(2)若平面内有6个点,过其中任意两点画直线,最多可以画多少条直线?
(3)若平面内有个点,过其中任意两点画直线,最多可以画多少条直线?(直接写出结果)
5.根据题意填空:(1)(2)每小问1分,(3)每小问2分,共6分)
(1)与是同一平面内两条相交直线,他们有一个交点,如果在这个平面内,再画第三条直线,那么这三条直线最多有 个交点.
(2)如果在(1)的基础上在这个平面内再画第四条直线,那么这四条直线最多可有 个交点.
(3)由(1)(2)我们可以猜想:在同一平面内,6条直线最多可有 个交点,条直线最多可有 条交点.(用含有的代数式表示)
6.如图,在直线上任取1个点,2个点,3个点,4个点,
(1)填写下表:
(2)在直线上取个点,可以得到几条射线?
(3)用这种方法可以得到15条线段吗?如果可以,请指出取几个点;不能,请说明理由.
7.画出线段.
(1)如图(1)所示,在线段上画出1个点,这时图中共有几条线段?
(2)如图(2)所示,在线段上画出2个点,这时图中共有几条线段?
(3)如图(3)所示,在线段上画出3个点,这时图中共有几条线段?
(4)当在线段上画出个点时,则共有几条线段?
8.【观察思考】如图线段上有两个点、,分别以点、、、为端点的线段共有 条.
【模型构建】若线段上有个点(包括端点),则该线段上共有 条线段.
【拓展应用】若有8位同学参加班级的演讲比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),请你应用上述模型构建,求一共要进行多少场比赛?
9.观察图形,并回答下列问题:
(1)图中共有几条线段?说明你分析这个问题的具体思路;
(2)请你用上面的思路来解决“十五个同学聚会每个人都与其他人握一次手,共握了多少次”这个问题;
(3)十五个同学聚会,每个人都送给其他人一张名片呢,共送了几张?
11.(1)在内部画1条射线,则图1中有 个不同的角;
(2)在内部画2条射线,,则图2中有 个不同的角;
(3)在内部画3条射线,,,则图3中有 个不同的角;
(4)在内部画10条射线,,,则图中有 个不同的角;
(5)在内部画条射线,,,则图中有 个不同的角.
12.过一个角的顶点,在这个角的内部引1条射线,共形成多少个角(包括原来的角)?如果引2条、3条这样的射线呢?由此,请猜想,过一个角的顶点,如果在这个角的内部引条射线,共形成多少个角?
13.(1)数一数图①中共有 个角,图②中共有 个角;图③中共有 个角.
(2)从(1)中你能找到一种数图④中角的个数的规律吗?
14.(1)如图①,过角的顶点在角的内部作一条射线,那么图中一共有多少个角?
(2)如图②,过角的顶点在角的内部作两条射线,那么图中一共有多少个角?
(3)如图③,过角的顶点在角的内部作条射线,那么图中一共有多少个角?
15.如图,在的内部:
(1)画1条射线,则图中共有几个角?把它表示出来.
(2)画2条射线,,则图中共有几个角?画3条呢?
(3)画行条射线,,,,图中共有几个角?
16.已知如图,是锐角,以为端点向内部作一条射线,则图中有多少个角?若作二条、三条射线有多少个角?条时有多少个角?画一画,你发现什么规律?
17.观察下图,回答下列问题:
(1)在图①中有几个角?
(2)在图②中有几个角?
(3)在图③中有几个角?
(4)以此类推,如图④所示,若一个角内有条射线,此时共有多少个角?
18.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图所示,如果过角的顶点:
(1)在角的内部作一条射线,那么图中一共有几个角?
(2)在角的内部作两条射线,那么图中一共有几个角?
(3)在角的内部作三条射线,那么图中一共有几个角?
(4)在角的内部作条射线,那么图中一共有几个角?
19.如图,在的内部引一条射线,能组成多少个角?引两条射线能组成多少个角?引三条射线呢?引五条射线呢?引条射线呢?
20.如图,在直线上任取1个点,2个点,3个点,4个点,
(1)填写下表:
(2)在直线上取个点,可以得到几条线段,几条射线?
21.(1)图中共有几条线段?说明你分析这个问题的具体思路.
(2)你能用上面的思路来解决“十五个同学聚会,每个人都与其他人握一次手,共握多少次?”这个问题吗?请解决.
(3)若改为“十五个同学聚会,每个人都送给其他人一张名片呢,共送了几张?”
22.众所周知,过两点确定一条直线,过三点中的任意两点最多能画三条直线.
(1)过四点、五点中的任意两点最多能画几条直线,请画出相应的图形;
(2)过点中的任意两点最多能画几条直线,请说明理由;
(3)小明有12种不同颜色的颜料,在颜料的调色中,若只能将它们中的任意两种颜料按的比例混合调配,那么小明画一幅图,总共有几种不同颜色颜料可供使用.
23.如图,过两点可画出条直线,过不共线的三点最多可以作出条直线,过无三点共线的四个点最多可作出条直线,,依此类推,经过平面上的个点,(无三点共线)最多可作出多少条直线?试说明道理.
图形
直线上点的个数
共有线段的条数
两者关系
2
1
3
3
4
6
点的个数
所得线段的条数
所得射线的条数
1
2
3
4
点的个数
所得线段的条数
所得射线的条数
1
2
3
4
相关试卷
这是一份初中数学4.1.1 立体图形与平面图形课后作业题,共22页。试卷主要包含了如图所示,正方体的展开图为,下列几何体中,圆柱体是等内容,欢迎下载使用。
这是一份初中数学人教版七年级上册1.2.2 数轴同步达标检测题,共17页。
这是一份初中数学人教版七年级上册1.2.1 有理数课后练习题,共11页。