十年高考数学真题分项汇编(2014-2023)(文科)专题25概率统计解答题(文科)(Word版附解析)
展开十年(2014-2023)年高考真题分项汇编—概率统计解答题
目录
题型一:事件的频率与概率 1
题型二:简单的随机抽样与用样本估计总体 9
题型三:概率统计中的决策建议 29
题型四:相关关系与回归分析 34
题型五:独立性检验 41
题型六:概率统计综合应用 56
题型一:事件的频率与概率
1.(2019·天津·文·第15题)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,.享受情况如表,其中“〇”表示享受,“”表示不享受.现从这6人中随机抽取2人接受采访.
员工
项目
子女教育
〇
〇
〇
〇
继续教育
〇
〇
〇
大病医疗
〇
住房贷款利息
〇
〇
〇
〇
住房租金
〇
赡养老人
〇
〇
〇
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
【答案】【思路分析】(1)根据分层抽样各层所抽比例相等可得结果;
(2)(i)用列举法求出基本事件数;
(ii)用列举法求出事件所含基本事件数以及对应的概率;
【解析】(1)由已知,老、中、青员工人数之比为,
由于采用分层抽样从中抽取25位员工,
因此应从老、中、青员工中分别抽取6人,9人,10人;
(2)(i)从已知的6人中随机抽取2人的所有可能结果为
,,,,共15种;
(ii)由表格知,符合题意的所有可能结果为,,, ,共11种,
所以,时间M发生的概率.
2.(2019·北京·文·第17题)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月,两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中,两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:
支付金额
支付方式
不大于2000元
大于2000元
仅使用
27人
3人
仅使用
24人
1人
(Ⅰ)估计该校学生中上个月,两种支付方式都使用的人数;
(Ⅱ)从样本仅使用的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用的学生中本月支付金额大于2000元的人数有变化?说明理由.
【答案】(Ⅰ)人;(Ⅱ);(Ⅲ)详解解析.
【解析】(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,,两种支付方式都不使用的有5人,仅使用的有30人,仅使用的有人,所以,两种支付方式都使用的人数有:,所以估计该校学生中上个月,两种支付方式都使用的人数为:人.
(Ⅱ)从样本仅使用的学生有人,其中不大于2000元的有人,大于元的有人
从中随机抽取1人,基本事件总数
该学生上个月支付金额大于2000元包含的基本事件个数
所以该学生上个月支付金额大于2000元的概率.
(Ⅲ)记事件为“从样本仅使用的学生随机抽查人,该学生本月的支付金额大于元”
假设样本仅使用的学生中,本月支付金额大于元的人数没有变化,则由(Ⅱ)知,
答案示例1:可以认为有变化,理由如下:比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于元的人数发生了变化,所以可以认为有变化.
答案示例2:无法确定有没有变化.理由如下:
事件是随机事件,比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.
【归纳与总结】本题考查频数、概率的求法,考查频数分布表、概率等基础知识,考查推理能力与计算能力,属于基础题.
3.(2018年高考数学天津(文)·第15题)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
【答案】解析:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
(ii)解:由(1),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G}共5种.所以,事件M发生的概率为.
4.(2014高考数学天津文科·第15题)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级
二年级
三年级
男同学
A
B
C
女同学
X
Y
Z
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(I)用表中字母列举出所有可能的结果;
(II)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
【答案】解析:(I)从6名同学中随机选出2人参加知识竞赛的所有可能结果为:
{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.
(II)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为
{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率.
5.(2014高考数学四川文科·第16题)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为
(1)求“抽取的卡片上的数字满足”的概率;
(2)求“抽取的卡片上的数字不完全相同”的概率.
【答案】(1);(2).
解析:(1)由题意,()所有的可能为:
(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足”为事件,则事件包括(1,1,2),(1,2,3),(2,1,3),共3种,所以.
因此,“抽取的卡片上的数字满足”的概率为.
(2)设“抽取的卡片上的数字不完全相同”为事件,则事件包括,共3种,所以.
因此“抽取的卡片上的数字不完全相同”的概率为.
6.(2014高考数学陕西文科·第21题)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)
车辆数(辆)
(1)若每辆车的投保金额均为元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占,在赔付金额为的样本车辆中,车主是新司机的占,估计在已投保车辆中,新司机获赔金额为4000元的概率.
【答案】(1);(2).
解析:(1)设表示事件“赔付金额为3000元”,表示事件“赔付金额为4000元”,
以频率估计概率得,由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为.
(2)设表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有辆,而赔付金额为4000元的车辆中,车主为新司机的有辆,所以样本中新司机车主获赔的金额为4000元的频率为,以频率估计概率得
7.(2014高考数学福建文科·第20题)(本小题满分12分)
根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035-4085元为中等偏下收入国家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:
行政区
区人口占城市人口比例
区人均GDP(单位:美元)
A
25%
8000
B
30%
4000
C
15%
6000
D
10%
3000
E
20%
10000
(1)判断该城市人均GDP是否达到中等偏上收入国家标准;
(3)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.
【答案】解析:(I)设该城市人口总数为,则该城市人均GDP为
.
因为,所以该城市人均GDP达到了中等偏上收入国家标准.
(II)“从5个行政区中随即抽取2个”的所有基本事件是:
共10个.设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:共3个.所以所求概率为.
8.(2014高考数学大纲文科·第20题)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.
【答案】(1)0.31 (2)3
解析:记表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.
B表示事件:甲需使用设备.
C表示事件:丁需使用设备.
D表示事件:同一工作日至少3人需使用设备.
E表示事件:同一工作日4人需使用设备.
F表示事件:同一工作日需使用设备的人数大于k.
(Ⅰ),
,,,,
所以
.
(II)由(I)知,若,则.
又,.
若,则.
所以的最小值为3.
9.(2015高考数学天津文科·第15题)(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.
(Ⅰ)用所给编号列出所有可能的结果;
(Ⅱ)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.
【答案】(Ⅰ)3,1,2;(Ⅱ)(ⅰ)见试题解析;(ⅱ)
解析:
(Ⅰ)由分层抽样方法可知应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2;(Ⅱ)(Ⅰ)一一列举,共15种;(Ⅱ)符合条件的结果有9种,所以.
试题解析:(Ⅰ)应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2;
(Ⅱ)(ⅰ)从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为,
,,,,,,,,,,,,,,共15种.
(ⅱ)编号为的两名运动员至少有一人被抽到的结果为,, ,, ,,,,,共9种,所以事件A发生的概率
10.(2015高考数学四川文科·第17题)一个小客车有5个座位,其座位号为,乘客 的座位号为,他们按照座位号顺序先后上车,乘客因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(I)若乘客坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)
(II)若乘客坐到了2号座位,其,他乘客按规则就坐,求乘客坐到5号座位的概率。
【答案】解析:
(1)余下两种坐法如下表所示
(2)若乘客P1做到了2号座位,其他乘客按规则就坐则所有可能坐法可用下表表示为:
于是,所有可能的坐法共8种
设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4
所以P(A)=
答:乘客P5坐到5号座位的概率为.
11.(2015高考数学陕西文科·第19题)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
天气
晴
雨
阴
阴
阴
雨
阴
晴
晴
晴
阴
晴
晴
晴
晴
日期
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
天气
晴
阴
雨
阴
阴
晴
阴
晴
晴
晴
阴
晴
晴
晴
雨
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.
【答案】(Ⅰ); (Ⅱ).
分析:(Ⅰ)在容量为30的样本中,从表格中得,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是.
(Ⅱ)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等)这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为,以频率估计概率,运动会期间不下雨的概率为.
解析:(Ⅰ)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是.
(Ⅱ)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等)这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为,以频率估计概率,运动会期间不下雨的概率为.
12.(2015高考数学山东文科·第16题)(本小题满分12分)某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团
未参加书法社团
参加演讲社团
未参加演讲社团
(Ⅰ)从该班随机选名同学,求该同学至少参加上述一个社团的概率;
(Ⅱ)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.
【答案】(1);(2).
解析:
(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有人,故至少参加上述一个社团的共有人,所以从该班级随机选名同学,该同学至少参加上述一个社团的概率为
(2)从这名男同学和名女同学中各随机选人,其一切可能的结果组成的基本事件有:
,共个.
根据题意,这些基本事件的出现是等可能的.
事件“被选中且未被选中”所包含的基本事件有:,共个.
因此被选中且未被选中的概率为.
13.(2015高考数学湖南文科·第16题)(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球和1个白球的甲箱与装有2个红球和2个白球的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖。
(Ⅰ)用球的标号列出所有可能的摸出结果;
(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由。
【答案】(Ⅰ)
(Ⅱ)说法不正确;
分析:(Ⅰ)利用列举法列出所有可能的结果即可;(Ⅱ)在(Ⅰ)中摸出的2个球都是红球的结果数,然后利用古典概率公式计算即可得到其对应的概率,中奖概率大于不中奖概率是错误的;
解析:(Ⅰ)所有可能的摸出结果是:
(Ⅱ)不正确,理由如下:
由(Ⅰ)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为共4种,所以中奖的概率为,不中奖的概率为,故这种说法不正确。
14.(2017年高考数学山东文科·第16题)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.
【答案】(Ⅰ);(Ⅱ)
【解析】(1)6个国家中任选2个,2个都是亚洲国家的概率为:.
(2)从亚洲国家和欧洲国家中各任选1个,这2个国家包括但不包括的概率.
题型二:简单的随机抽样与用样本估计总体
1.(2023年全国乙卷文科·第17题)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号
1
2
3
4
5
6
7
8
9
10
伸缩率
545
533
551
522
575
544
541
568
596
548
伸缩率
536
527
543
530
560
533
522
550
576
536
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
【答案】(1),;
(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
解析:【小问1详解】
,
,
,
的值分别为: ,
故
【小问2详解】
由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
2.(2023年新课标全国Ⅱ卷·第19题)某研究小组经过研究发现某种疾病患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率%时,求临界值c和误诊率;
(2)设函数,当时,求的解析式,并求在区间的最小值.
【答案】(1),;
(2),最小值为.
解析:(1)
依题可知,左边图形第一个小矩形的面积为,所以,
所以,解得:,
.
(2)
当时,
;
当时,
,
故,
所以在区间的最小值为.
3.(2021年全国高考乙卷文科·第17题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
103
10.0
102
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
10.3
10.6
10.5
104
10.5
旧设备和新设备生产产品该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.
解析:(1),
,
,
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
4.(2022新高考全国II卷·第19题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
【答案】(1)岁;
(2);
(3).
解析:(1)平均年龄
(岁).
(2)设{一人患这种疾病的年龄在区间},所以
.
(3)设任选一人年龄位于区间,任选一人患这种疾病,
则由条件概率公式可得
.
5.(2019·全国Ⅲ·文·第16题)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中的a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).
【答案】【解析】:(1)为事件:“乙离子残留在体内的百分比不低于5.5”,
根据直方图得到(C)的估计值为0.70.
则由频率分布直方图得:
,
解得乙离子残留百分比直方图中,.
(2)估计甲离子残留百分比的平均值为:
.
乙离子残留百分比的平均值为:
.
6.(2019·全国Ⅱ·文·第19题)某行业主管部门为了解本行业中小企业的生产情况,随机调查了个企业,得到这些企业第一季度相对于前一年第一季度产值增长率的频数分布表.
的分组
企业数
(1)分别估计这类企业中产值增长率不低于的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到)
附:.
【答案】解:(1)根据产值增长率频数分布表得,所调查的个企业中产值增长率不低于的企业频率为.
产值负增长的企业频率为.
用样本频率分布估计总体分布得这类企业中产值增长率不低于的企业比例为,产值负增长的企业比例为.
(2),
,
,
所以,这类企业产值增长率的平均数与标准差的估计值分别为,.
7.(2018年高考数学课标卷Ⅰ(文)·第19题)(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量
频数
1
3
2
4
9
26
5
使用了节水龙头50天的日用水量频数分布表
日用水量
频数
1
5
13
10
16
5
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)
【答案】解:(1)
(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于的频率为
,
因此该家庭使用节水龙头后日用水量小于的概率的估计值为.
(3)该家庭未使用节水龙头50天日用水量的平均数为
该家庭使用了节水龙头后50天日用水量的平均数为
估计使用节水龙头后,一年可节省水.
8.(2014高考数学重庆文科·第17题)20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:
(I)求频数直方图中的值;
(II)分别球出成绩落在与中的学生人数;
(III)从成绩在的学生中人选2人,
求次2人的成绩都在中的概率.
【答案】
答案:(I)(II)2,3(III)
解析:(I)由频率分布直方图可知组距为10,,解得.
(II)由图可知落在[50,60)的频率为;
由频数=总体频率,从而得到该范围内的人数为200.1=2
落在[60,70)范围内的频率为;
得该范围内的人数为200.15=3;
(III)记[50,60)范围内2人分别为Al,A2;
[60,70)范围内3人分别B1,B2,B3;
从5人中选2人的情况如下:
A1A2,A1B1,A1B2,A1B3,A2B1,
A2B2,A2B3,B1B2,B1B3,B2B3;
此2人成绩都在[60,70)范围内共有B1B2,B1B3,B2B3,3种情况,总情况有10种;故概率为
9.(2014高考数学课标2文科·第19题)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:
(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;
(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;
(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.
【答案】解:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.
50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为,所以该市的市民对乙部门评分的中位数的估计值是67.
(Ⅱ)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为,,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.
(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评价较高、评价较一致,对乙部门的评价较低、评价差异较大.(考生利用其他统计量进行分析,结论合理的同样给分),
10.(2014高考数学课标1文科·第18题)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
频数
6
26
38
22
8
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
【答案】解析:(1)
(II)质量指标值的样本平均数为
80×0.06+90×0.26+100×0.38+110×0.22+120×0.08
=100.
质量指标值的样本方差为
=104.
所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.
(III)质量指标值不低于95的产品所占比例的估计值为 0.38+0.22+0.08=0.68.
由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.
11.(2014高考数学广东文科·第17题)某车间20名工人年龄数据如下表:
(1)求这20名工人年龄的众数与极差;
(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
年龄(岁)
工人数(人)
19
28
29
30
31
32
40
1
3
3
5
4
3
1
合计
20
【答案】(1)众数为30,极差为21;(2)详见解析;(3)12.6.
解析:(1)这20名工人年龄的众数为30,极差为40-19=21;
七6666666666彩教育网 www.7caiedu.cn 七彩教育网
(2)茎叶图如下:
七6666666666彩教育网 www.7caiedu.cn 七彩教育网
七6666666666彩教育网 www.7caiedu.cn 七彩教育网
(3)年龄的平均数为:,
七6666666666彩教育网 www.7caiedu.cn 七彩教育网
故这20名工人年龄的方差为:
七6666666666彩教育网 www.7caiedu.cn 七彩教育网
.
七6666666666彩教育网 www.7caiedu.cn 七彩教育网
12.(2014高考数学北京文科·第18题)(本小题满分13分)
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
组号
分组
频数
1
[0,2)
6
2
[2,4)
8
3
[4,6)
17
4
[6,8)
22
5
[8,10)
25
6
[10,12)
12
7
[12,14)
6
8
[14,16)
2
9
[16,18)
2
合计
100
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
【答案】(1) (2);(3)第四组.
解析:(I)根据频数分布表,名学生中课外阅读时间不少于小时的学生共有
6=2+2=10名,所以样本中的学生课外阅读时间少于小时的频率是.
从该校随机选取一名学生,估计这名学生该周课外阅读时间少于小时的概率为.
(II)课外阅读时间落在组的有人,频率为,所以,
课外阅读时间落在组的有人,频率为,所以.
(III)估计样本中的名学生课外阅读时间的平均数在第组.
13.(2015高考数学新课标2文科·第18题)(本小题满分12分)某公司为了了解用户对其产品的满意度,从两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到地区用户满意度评分的频率分布直方图和地区用户满意度评分的频率分布表.
地区用户满意度评分的频率分布直方图
地区用户满意度评分的频率分布表
满意度评分分组
频数
2
8
14
10
6
(Ⅰ)在答题卡上作出地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
地区用户满意度评分的频率分布直方图
(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分
低于70分
70分到89分
不低于90分
满意度等级
不满意
满意
非常满意
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
【答案】(Ⅰ)见试题解析(Ⅱ)A地区的用户的满意度等级为不满意的概率大.
分析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(II)由直方图得 的估计值为, 的估计值为,所以A地区的用户的满意度等级为不满意的概率大.
解析:(Ⅰ)
通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.
(Ⅱ)A地区的用户的满意度等级为不满意的概率大.
记 表示事件“A地区的用户的满意度等级为不满意”;表示事件“B地区的用户的满意度等级为不满意”.
由直方图得 的估计值为,
的估计值为,
所以A地区的用户的满意度等级为不满意的概率大.
14.(2015高考数学广东文科·第17题)(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
【答案】分析:(1)由频率之和等于可得的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于可得中位数;(3)先计算出月平均用电量为,,,的用户的户数,再计算抽取比例,进而可得月平均用电量在的用户中应抽取的户数.
解析:(1)由得:,所以直方图中的值是
(2)月平均用电量的众数是
因为,所以月平均用电量的中位数在内,设中位数为,由得:,所以月平均用电量的中位数是
(3)月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,抽取比例,所以月平均用电量在的用户中应抽取户
15.(2015高考数学福建文科·第18题)(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.
组号
分组
频数
1
2
2
8
3
7
4
3
(Ⅰ)现从融合指数在和内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在内的概率;
(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.
【答案】(Ⅰ);(Ⅱ).
解析:解法一:(Ⅰ)融合指数在内的“省级卫视新闻台”记为,,;融合指数在内的“省级卫视新闻台”记为,.从融合指数在和内的“省级卫视新闻台”中随机抽取家的所有基本事件是:,,,,,,,,,,共个.
其中,至少有家融合指数在内的基本事件是:,,,,,,,,,共个.
所以所求的概率.
(Ⅱ)这家“省级卫视新闻台”的融合指数平均数等于.
解法二:(Ⅰ)融合指数在内的“省级卫视新闻台”记为,,;融合指数在内的“省级卫视新闻台”记为,.从融合指数在和内的“省级卫视新闻台”中随机抽取家的所有基本事件是:,,,,,,,,,,共个.
其中,没有家融合指数在内的基本事件是:,共个.
所以所求的概率.
(Ⅱ)同解法一.
16.(2015高考数学安徽文科·第17题)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
(Ⅰ)求频率分布图中的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.
【答案】(Ⅰ)0.006;(Ⅱ);(Ⅲ)
解析:
(Ⅰ)因为,所以
(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,
所以该企业职工对该部门评分不低于80的概率的估计值为.
(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;
受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为.
从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是
又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为.
17.(2017年高考数学北京文科·第17题)某大学艺术专业名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了名学生,记录他们的分数,将数据分成组,,┄,,并整理得到如下频率分布直方图:
(1)从总体的名学生中随机抽取一人,估计其分数小于的概率;
(2)已知样本中分数小于的学生有人,试估计总体中分数在区间内的人数;
(3)已知样本中有一半男生的分数不小于,且样本中分数不小于的男女生人数相等.试估计总体中男生和女生人数的比例.
【答案】(1);(2);(3)总体中男生和女生的比例为.
【解析】(1)由频率分布直方图得:
分数大于等于的频率为分数和的频率之和,即,由频率估计概率得分数小于的概率为.
(2)设样本中分数在内的人数为,
由频率和为得,解得.
总体中分数在的人数为(人).
(3)设样本中男生人数为 ,女生人数为,
样本中分数不小于的人数共(人).
由题可得分数不小于的人中男生和女生各人,
样本中男生人数为(人), 女生分数人数为(人),
总体中男生和女生的比例为.
18.(2016高考数学四川文科·第16题)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照,,……分成9组,制成了如图所示的频率分布直方图.
0.08
0
0.16
0.5
a
1
0.42
1.5
0.50
2
2.5
0.12
3
3.5
0.04
4
4.5
月均用水量(吨)
(I)求直方图中的值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;
(Ⅲ)估计居民月均用水量的中位数.
【答案】(1);(2)36000;(3)2.04.
解析:(1)由频率分布直方图,可知:用水量在的频率为.
同理,在等组的频率分别为
0.08,0.21,0.25,0.06,0.04,0.02
由,解得:
(2)由(1),100位居民月均用水量不低于3吨的频率为
由以上样本的频率分布,可以估计30万居民中月均用水量低于3吨的人数为
(3)设中位数为吨
因为前5组的频率之和为,而前4组的频率之和为
,所以,由
解得:,故可估计居民月均用水量的中位数为吨.
19.(2014高考数学山东文科·第16题)(本小题满分12分)
海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区
A
B
C
数量
50
150
100
(I)求这6件样品中来自,,各地区商品的数量;
(II)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
【答案】解析:(Ⅰ)因为样本容量与总体中的的个数的比是 ,
所以样本中包含三个地区的个体数量分别是:
,,.
所以,,,三个地区的商品被选取的件数分别为1,3,2.
(Ⅱ)设6件来自A,B,C三个地区的样品分别为:;,,;,.
则抽取的这两件商品构成的所有基本事件为:
,,,,,
, , , , ,
,,,,,共15个.
每个样品被抽到的机会均等,因此这些基本事件出现是等可能的.
记事件D:“抽取的这2件商品来自相同地区”,
则事件D包含的基本事件有:
, ,,,共4个.
所以,即这2件商品来自同一地区的概率是.
题型三:概率统计中的决策建议
1.(2014高考数学湖南文科·第17题)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
其中分别表示甲组研发成功和失败;分别表示乙组研发成功和失败.
(1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.
【答案】(1)甲优于乙 (2)
解析:(I)甲组研发新产品的成绩为 1,1,1,0,0,1,1,1,0,1,0,1,1,0,1
其平均数为
方差为
乙组研发新产品的成绩为 1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,
其平均数为
方差为
因为所以甲组的研发水平优于乙组
(2)记在所抽得的15个结果中,恰有一组研发成功的结果是
,共7个,故事件发生的频率为
将频率视为概率,即所求概率为
2.(2016高考数学课标Ⅰ卷文科·第19题)(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(I)若=19,求y与x的函数解析式;
(II)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
【答案】 (I)(II)19(III)19
【官方解答】(Ⅰ)当时,;当时,,
所以与的函数解析式为.
(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7
故的最小值为19.
(Ⅲ)若每台机器在购机同时都购买19个易损零件
则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为.
比较两个平均数可知,购买1台机器的同时应购买19个易损零件.
3.(2016高考数学北京文科·第17题)某市民用水拟实行阶梯水价,每人用水量中不超过 立方米的部分按4元/立方米收费,超出立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(Ⅰ)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,至少定为多少?
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替,当=3时,估计该市居民该月的人均水费.
【答案】(Ⅰ)3;(Ⅱ)10.5元.
解析:(Ⅰ)由用水量的频率分布直方图知,
该市居民该月用水量在区间,,,,内的频
率依次为,,,,.
所以该月用水量不超过立方米的居民占%,用水量不超过立方米的居民占%.
依题意,至少定为.
(Ⅱ)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:
组号
1
2
3
4
5
6
7
8
分组
频率
根据题意,该市居民该月的人均水费估计为:
(元).
4.(2018年高考数学课标Ⅱ卷(文)·第18题)(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
【答案】解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为
=–30.4+13.5×19=226.1(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为
=99+17.5×9=256.5(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
5.(2018年高考数学北京(文)·第17题)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型
第一类
第二类
第三类
第四类
第五类
第六类
电影部数
140
50
300
200
800
510
好评率
0.4
0.2
0.15
0.25
0.2
0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
【答案】(I);(II);(III)增加第五类电影的好评率, 减少第二类电影的好评率.
解析:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.
第四类电影中获得好评的电影部数是200×0.25=50,
故所求概率为.
(Ⅱ)方法一:由题意知,样本中获得好评的电影部数是
140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1
=56+10+45+50+160+51
=372.
故所求概率估计为.
方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B.
没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.
由古典概型概率公式得.
(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.
6.(2015高考数学北京文科·第17题)(本小题满分13分)某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商
品
顾
客
人
数
甲
乙
丙
丁
√
×
√
√
×
√
×
√
√
√
√
×
√
×
√
×
√
×
×
×
×
√
×
×
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
【答案】(Ⅰ)0.2;(Ⅱ)0.3;(Ⅲ)同时购买丙的可能性最大.
分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)由统计表读出顾客同时购买乙和丙的人数,计算出概率;(Ⅱ)先由统计表读出顾客在甲、乙、丙、丁中同时购买中商品的人数,再计算概率;(Ⅲ)由统计表读出顾客同时购买甲和乙的人数为,顾客同时购买甲和丙的人数为,顾客同时购买甲和丁的人数为,分别计算出概率,再通过比较大小得出结论.
解析:(Ⅰ)从统计表可以看出,在这位顾客中,有位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为.
(Ⅱ)从统计表可以看出,在在这位顾客中,有位顾客同时购买了甲、丙、丁,另有位顾客同时购买了甲、乙、丙,其他顾客最多购买了种商品.所以顾客在甲、乙、丙、丁中同时购买种商品的概率可以估计为.
(Ⅲ)与(Ⅰ)同理,可得:
顾客同时购买甲和乙的概率可以估计为,
顾客同时购买甲和丙的概率可以估计为,
顾客同时购买甲和丁的概率可以估计为,
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
题型四:相关关系与回归分析
1.(2015高考数学重庆文科·第17题)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份
2010
2011
2012
2013
2014
时间代号t
1
2
3
4
5
储蓄存款y(千亿元)
5
6
7
8
10
(Ⅰ)求关于的回归方程;
(Ⅱ)用所求回归方程预测该地区2015年的人民币储蓄存款.
附:回归方程中
【答案】(Ⅰ),(Ⅱ)千亿元.
分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,
(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.
解析: (1)列表计算如下
i
1
1
5
1
5
2
2
6
4
12
3
3
7
9
21
4
4
8
16
32
5
5
10
25
50
15
36
55
120
这里
又
从而.
故所求回归方程为.
(2)将代入回归方程可预测该地区2015年的人民币储蓄存款为
2.(2015高考数学新课标1文科·第19题)(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
46.6
56.3
6.8
289.8
1.6
1469
108.8
表中,。
(Ⅰ)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;
(Ⅲ)已知这种产品的年利率与、的关系为.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费时,年销售量及年利润的预报值是多少?
(ii)年宣传费为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
【答案】(Ⅰ)适合作为年销售关于年宣传费用的回归方程类型(Ⅱ)(Ⅲ)46.24
分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令,先求出建立关于的线性回归方程,即可关于的回归方程;(Ⅲ)(ⅰ)利用关于的回归方程先求出年销售量的预报值,再根据年利率z与x、y的关系为z=0.2y-x即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,列出关于的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.
解析:(Ⅰ)由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.
(Ⅱ)令,先建立关于的线性回归方程,由于=,
∴=563-68×6.8=100.6.
∴关于的线性回归方程为,
∴关于的回归方程为.
(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量的预报值
=576.6,
.
(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值
,
∴当=,即时,取得最大值.
故宣传费用为46.24千元时,年利润的预报值最大.……12分
3.(2022年高考全国乙卷数学(文)·第19题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i
1
2
3
4
5
6
7
8
9
10
总和
根部横截面积
0.04
0.06
0.04
0.08
0.08
005
005
0.07
0.07
0.06
0.6
材积量
0.25
0.40
0.22
0.54
0.51
0.34
0.36
0.46
0.42
0.40
3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
【答案】(1);
(2)
(3)
解析:【小问1详解】
样本中10棵这种树木的根部横截面积的平均值
样本中10棵这种树木的材积量的平均值
据此可估计该林区这种树木平均一棵的根部横截面积为,
平均一棵的材积量为
【小问2详解】
则
【小问3详解】
设该林区这种树木的总材积量的估计值为,
又已知树木的材积量与其根部横截面积近似成正比,
可得,解之得.
则该林区这种树木总材积量估计为
4.(2017年高考数学课标Ⅰ卷文科·第19题)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
抽取次序
9
10
11
12
13
14
15
16
零件尺寸
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,
,,其中为抽取的第个零件的尺寸,
.
(1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本的相关系数.
【答案】(1),可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为,.
【解析】(1),
,
故
. 所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.
(2)(i),
第13个零件的尺寸为,,
所以从这一天抽检的结果看,需对当天的生产过程进行检查.
(ii)剔除,这条生产线当天生产的零件尺寸的均值为,
方差为
故标准差为.
(ii)解法二:剔除,这条生产线当天生产的零件尺寸的均值为,由,得,
剔除离群值,这条生产线当天生产的零件尺寸的方差
5.(2016高考数学课标Ⅲ卷文科·第18题)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;
(Ⅱ)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
【答案】(1)可用线性回归模型拟合变量与的关系.(2)我们可以预测2016年我国生活垃圾无害化处理亿吨.
【解析】(Ⅰ)由折线图中数据和附注中参考数据得,,
因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系.
(Ⅱ)由及(Ⅰ)得
所以,关于的回归方程为:.
将2016年对应的代入回归方程得:,
所以预测2016年我国生活垃圾无害化处理量将约亿吨.
题型五:独立性检验
1.(2023年全国甲卷文科·第19题)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
对照组
试验组
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:,
0.100
0.050
0.010
2.706
3.841
6635
【答案】(1)
(2)(i);列联表见解析,(ii)能
解析:【小问1详解】
试验组样本平均数为:
【小问2详解】
(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,
由原数据可得第11位数据为,后续依次为,
故第20位为,第21位数据为,
所以,
故列联表为:
合计
对照组
6
14
20
试验组
14
6
20
合计
20
20
40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.
2.(2021年高考全国甲卷文科·第17题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品
二级品
合计
甲机床
150
50
200
乙机床
120
80
200
合计
270
130
400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:
0.050
0.010
0.001
k
3.841
6.635
10.828
【答案】(1)75%;60%;
(2)能.
解析:(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
3.(2020年高考课标Ⅱ卷文科·第18题)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,≈1.414.
【答案】(1);(2);(3)详见解析
【解析】(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本(i=1,2,…,20)的相关系数为
(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,
由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,
采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,
从而可以获得该地区这种野生动物数量更准确的估计.
【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.
4.(2020年高考课标Ⅲ卷文科·第18题)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
12
3(轻度污染)
6
7
8
4(中度污染)
7
2
0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400
人次>400
空气质量好
空气质量不好
附:,
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
【答案】(1)该市一天的空气质量等级分别为、、、的概率分别为、、、;(2);(3)有,理由见解析.
【解析】(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次
人次
空气质量不好
空气质量好
,
因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.
5.(2022年全国高考甲卷数学(文)·第17题)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数
未准点班次数
A
240
20
B
210
30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
0.100
0.050
0.010
2.706
3.841
6.635
【答案】
(1)A,B两家公司长途客车准点的概率分别为, (2)有
【解析】根据表中数据,A共有班次260次,准点班次有240次,
设A家公司长途客车准点事件为M,则;
B共有班次240次,准点班次有210次,
设B家公司长途客车准点事件为N,
则.
A家公司长途客车准点的概率为;
B家公司长途客车准点的概率为.
(2)列联表
准点班次数
未准点班次数
合计
A
240
20
260
B
210
30
240
合计
450
50
500
=,
根据临界值表可知,有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
6.(2020年新高考全国Ⅰ卷(山东)·第19题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
32
18
4
6
8
12
3
7
10
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
0.050 0.010 0.001
3.841 6.635 10.828
【答案】(1);(2)答案见解析;(3)有.
解析:(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,
所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;
(2)由所给数据,可得列联表为:
合计
64
16
80
10
10
20
合计
74
26
100
(3)根据列联表中的数据可得
,
因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
7.(2020年新高考全国卷Ⅱ数学(海南)·第19题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
【答案】(1);(2)答案见解析;(3)有.
解析:(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,
所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;
(2)由所给数据,可得列联表为:
合计
64
16
80
10
10
20
合计
74
26
100
(3)根据列联表中的数据可得
,
因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
8.(2022新高考全国I卷·第20题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好
良好
病例组
40
60
对照组
10
90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050
0.010
0.001
k
3.841
6.635
10.828
【答案】(1)答案见解析
(2)(i)证明见解析;(ii);
解析:(1)由已知,
又,,
所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
(2)(i)因为,
所以 所以,
(ii)由已知,,
又,, 所以
9.(2018年高考数学课标Ⅲ卷(文)·第18题)(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过
不超过
第一种生产方式
第二种生产方式
(3)根据(2)中的列表,能否有的把握认为两种生产方式的效率有差异?
附:
,
【答案】【官方解析】(1)第二种生产方式的效率更高.
理由如下:
(i)由茎叶图可知:用第一种生产方式的工人中,有的工人完成生产任务所需时间至少分钟,用第二种生产方式的工人中,有的工人完成生产任务所需时间至多分钟.因此第二种生产方式的效率更高.
(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为分钟,因此第二种生产方式的效率更高.
(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于分钟:用第二种生产方式的工人完成生产任务平均所需时间低于分钟.因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎上的最多,关于茎大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎上的最多,关于茎大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知.
列联表如下:
超过
不超过
第一种生产方式
第二种生产方式
(3)由于,所以有99%的把握认为两种生产方式的效率有差异.
10.(2017年高考数学课标Ⅱ卷文科·第19题)(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如下:
(1)记表示时间“旧养殖法的箱产量低于”,估计的概率;
(2)填写下面列联表,并根据列联表判断是否有的把握认为箱产量与养殖方法有关:
箱产量<
箱产量
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
【答案】(1)0.62.(2)有把握(3)新养殖法优于旧养殖法
【试题分析】(1)根据频率分布直方图中小长方形面积等于对应概率,计算的概率
(2)将数据填入对应表格,带入卡方公式,计算对照参考数据可以判断有的把握,(3)先从均值比较大小,越大越好,再从数据分布情况看稳定性,月集中越好,综上可得新养殖法优于旧养殖法.
【试题解析】
(1)旧养殖法的箱产量低于的频率为
因此,事件A的概率估计值为0.62.
(2)
箱产量< 50 kg
箱产量50 kg
旧养殖法
100
新养殖法
100
200
所以有99%的把握认为箱产量与养殖方法有关.
(3)设新养殖法箱产量的中位数的估计值为.
则.
解得:.
箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.
11.(2019·全国Ⅰ·文·第17题)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意
不满意
男顾客
40
10
女顾客
30
20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有的把握认为男、女顾客对该商场服务的评价有差异?
附:.
0.050
0.010
0.001
3.841
6.635
10.828
【答案】【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2).
由于,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
12.(2014高考数学辽宁文科·第18题)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品
不喜欢甜品
合计
南方学生
60
20
80
北方学生
10
10
20
合计
70
30
100
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
0.100
0.050
0.010
k
2.706
3.841
6.635
附:
【答案】
解析:
解析:(Ⅰ)将列联表中的数据代入公式计算,得
由于4.762≥3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”,
(Ⅱ)从5名数学系的学生中任取3人的一切可能结果所组成的基本事件空间
,,
,,
其中表示喜欢甜品的学生,,表示不喜欢甜品的学生,
由10个基本事件组成,且这些基本事件的出现是等可能的
用A表示“3人中至多有1人喜欢甜品”这一事件,则
事件A是由7个基本事件组成的,因而
13.(2014高考数学安徽文科·第17题)(本小题满分12分)
某高校共有学生15000人,其中男生10500人,女生4500人. 为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(Ⅰ)应收集多少位女生的样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:,估计该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
【答案】解:(Ⅰ),所以应收集90位女生的样本数据.
(Ⅱ)由频率分布直方图得,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.
(Ⅲ)由(II)知,300位学生中有人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:
每周平均体育运动时间与性别列联表
结合列联表可算得.
所以,有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
题型六:概率统计综合应用
1.(2016高考数学山东文科·第16题)(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为.奖励规则如下:
①若,则奖励玩具一个;
②若,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(I)求小亮获得玩具的概率;
(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
【答案】解析:用数对表示儿童参加活动先后记录的数,则基本事件空间与点集
一一对应,因为中元素个数是,所以基本事件总数为
(Ⅰ)记“”为事件
则事件包含的基本事件共有5个,即
所以,即小亮获得玩具的概率为
(Ⅱ)记“”为事件,“”为事件
则事件包含的基本事件共有个,即
所以,
则事件包含的基本事件共有个,即
所以,
因为
所以,小亮获得水杯的概率大于获得饮料的概率.
2.(2016高考数学课标Ⅱ卷文科·第18题)(本小题满分12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
保费
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
频数
60
50
30
30
20
10
(1)记为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(2)记为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的”.求的估计值;
(3)求续保人本年度的平均保费估计值.
【答案】 (1)(2);(3).
【官方解答】(1)事件发生当且仅当一年内出险次数小于.由所给数据知,一年内出险次数小于的频率为:,故的估计值为.
(2)事件发生当且仅当一年内出险次数大于且小于,由所给数据知,一年内出险次数大于且小于的频率为:,故的估计值为.
(3)由所给数据得
保费
频率
调查的200名续保人的平均保费为:
.
因此,续保人本年度平均保费的估计值为.
十年高考数学真题分项汇编(2014-2023)(理科)专题25概率统计解答题(理科)(Word版附解析): 这是一份十年高考数学真题分项汇编(2014-2023)(理科)专题25概率统计解答题(理科)(Word版附解析),共79页。试卷主要包含了设.已知.,求的值;,80,9,4,乙获得优秀的概率为0等内容,欢迎下载使用。
十年高考数学真题分项汇编(2014-2023)(文科)专题24解析几何解答题(文科)(Word版附解析): 这是一份十年高考数学真题分项汇编(2014-2023)(文科)专题24解析几何解答题(文科)(Word版附解析),共122页。试卷主要包含了解答题等内容,欢迎下载使用。
十年高考数学真题分项汇编(2014-2023)(文科)专题21数列解答题(文科)(Word版附解析): 这是一份十年高考数学真题分项汇编(2014-2023)(文科)专题21数列解答题(文科)(Word版附解析),共68页。试卷主要包含了解答题等内容,欢迎下载使用。