终身会员
搜索
    上传资料 赚现金

    13.3.1 等腰三角形的性质 人教八年级上册教学课件

    立即下载
    加入资料篮
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第1页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第2页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第3页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第4页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第5页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第6页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第7页
    13.3.1  等腰三角形的性质 人教八年级上册教学课件第8页
    还剩34页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版八年级上册13.3.1 等腰三角形教学课件ppt

    展开

    这是一份初中数学人教版八年级上册13.3.1 等腰三角形教学课件ppt,共42页。PPT课件主要包含了学习目标,新课引入,新知学习,课堂小结,生活中的等腰三角形,钝角三角形,直角三角形,锐角三角形,第3题图,第4题图等内容,欢迎下载使用。
    1. 理解并掌握等腰三角形的性质.2. 经历等腰三角形的性质的探究过程,能初步运用等腰三角形的性质解决有关问题.
    有两条边相等的三角形叫做等腰三角形.
    等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
    把一张长方形的纸按图中的虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?
    AB = AC等腰三角形
    把剪出的等腰三角形沿折痕对折,△ABC 是轴对称图形吗,对称轴在哪儿?
    观察重合的线段和角,猜想等腰三角形的性质.
    猜想 1:等腰三角形的两个底角相等.猜想 2:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.
    猜想:等腰三角形的两个底角相等.
    已知:△ABC 中,AB = AC,求证:∠B =∠C.
    证明:作底边的中线 AD,则 BD = CD.在△BAD 和△CAD 中AB = AC ( 已知 )BD = CD ( 已作 )AD = AD ( 公共边 )∴△BAD≌△CAD (SSS)∴∠B =∠C (全等三角形的对应角相等).
    方法一:作底边上的中线
    方法二:作顶角的平分线
    证明:作顶角的平分线 AD,则∠BAD =∠CAD.在△BAD 和△CAD 中AB = AC (已知)∠BAD =∠CAD (已作)AD = AD (公共边)∴△BAD ≌△CAD (SAS)∴∠B =∠C(全等三角形的对应角相等).
    方法三:作底边上的高线
    证明:作 BC 边上的高线 AD.∴∠ADB=∠ADC=90°在 Rt△BAD 和 Rt△CAD 中AB = AC ( 已知 ) AD = AD ( 公共边 )∴△BAD≌△CAD (HL)∴∠B =∠C (全等三角形的对应角相等).
    证明等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.
    证明:∵△BAD≌△CAD,可得 BD = CD,∠BAD =∠CAD,∠ADB=∠ADC=90°即 AD 是等腰△ABC 底边 BC 上的中线、顶角∠ BAC 的角平分线、底边BC上的高线.
    性质 1:等腰三角形的两个底角相等 ( 简写成:对边对等角 ) .
    应用格式:∵AB = AC∴∠B =∠C (等边对等角)
    性质 2:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合 ( 简写成:三线合一 ).
    应用格式 1:∵AB = AC,AD⊥BC∴BD = CD,∠BAD =∠CAD ( 三线合一 )应用格式 2:∵AB = AC,BD = CD,∴AD⊥BC,∠BAD = ∠CAD( 三线合一 )
    应用格式 3:∵AB = AC,∠BAD=∠CAD∴AD⊥BC,BD = CD ( 三线合一 )
    例如图,在△ABC 中 ,AB = AC,点 D 在 AC 上,且 BD = BC = AD,求△ABC 各角的度数.
    分析:(1) 指出图中有几个等腰三角形?△ABC,△ABD,△BCD.(2) 找出图中所有相等的角;∠A =∠ABD,∠C =∠BDC =∠ABC .(3) 观察∠BDC 与∠A、∠ABD 的关系.∠BDC =∠A +∠ABD = 2∠A = 2∠ABD,∠ABC -∠BDC = 2∠A,∠C =∠BDC = 2∠A.(4) 设∠A = x°∵ ∠A+∠ABC +∠C = 180°,∴x + 2x + 2x = 180.
    解:∵AB = AC,BD = BC = AD,∴∠ABC =∠C =∠BDC,∠A =∠ABD.设∠A = x,则∠BDC =∠A +∠ABD = 2x,从而∠ABC =∠C =∠BDC = 2x,于是在△ABC 中,有∠A +∠ABC +∠C = x + 2x + 2x = 180°解得 x = 36°,在△ABC 中,∠A = 36°,∠ABC =∠C = 72°.
    1. (1) 等腰三角形一个底角为75°,它的另外两个角为_______________;(2) 等腰三角形一个角为36°,它的另外两个角为____________________;(3) 等腰三角形一个角为120°,它的另外两个角为_______________.
    72°,72° 或 36° ,108°
    2.如图,△ABC 中,AB = AC,AD 和 BE 是高,它们相交于点 H,且AE = BE,求证:AH = 2BD.
    分析:(1) 运用等腰三角形“三线合一”,得 2BD = BC(2) 证明△AHE≌△BCE .
    证明:∵AB = AC,AD 是高,∴BC = 2BD.∵AD,BE 是高,∴∠ADC = 90°,∠AEH =∠BEC = 90°∵∠HAE +∠C = 90°,∠CBE +∠C = 90°∴∠HAE =∠CBE .在△AHE 和△BCE 中,∠HAE =∠CBE,AE = BE,∠AEH =∠BEC,∴△AHE≌△BCE(ASA). ∴AH = BC. 又∵BC = 2BD,∴AH = 2BD.
    1. 说出等腰三角形的概念2. 举出等腰三角形的两个性质
    两条边相等的三角形叫做等腰三角形. 等腰三角形以顶角平分线 ( 底边上的中线或底边上的高 ) 所在直线为对称轴。
    性质 1:等腰三角形的两个底角相等 ( 简写成:等边对等角 ) .性质 2:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合 ( 简写成:三线合一 ).
    第1课时 等腰三角形的性质
    知识点1 等腰三角形的性质:等边对等角
    知识点2 等腰三角形的性质:“三线合一”
    A. 等边对等角 B. 等角对等边C. 垂线段最短 D. 三线合一
    角度1 利用等腰三角形的性质解决动点问题
    角度2 等腰三角形边角不确定产生的分类讨论
    (关键点:等腰三角形的腰不确定时,需要分类讨论)
    角度3 利用等腰三角形的性质证明边角关系

    相关课件

    数学八年级上册13.3.1 等腰三角形课文内容ppt课件:

    这是一份数学八年级上册13.3.1 等腰三角形课文内容ppt课件,共14页。PPT课件主要包含了观察与思考,∠B∠C,几何语言,∵ABAC,∴∠B∠C,°40°,或55°55°,∠1∠2,BDCD,AD⊥BC等内容,欢迎下载使用。

    数学八年级上册13.3.1 等腰三角形示范课课件ppt:

    这是一份数学八年级上册13.3.1 等腰三角形示范课课件ppt,共17页。PPT课件主要包含了判断正误口答,课堂小结等内容,欢迎下载使用。

    初中数学人教版八年级上册13.3.1 等腰三角形习题课件ppt:

    这是一份初中数学人教版八年级上册13.3.1 等腰三角形习题课件ppt,共26页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map