2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.1函数的概念及其表示课件
展开1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数.3.了解简单的分段函数,并会简单的应用.
1.函数的概念一般地,设A,B是 ,如果对于集合A中的 一个数x,按照某种确定的对应关系f,在集合B中都有 的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素: 、 、 .(2)如果两个函数的 相同,并且 完全一致,则这两个函数为同一个函数.
3.函数的表示法表示函数的常用方法有 、图象法和 .4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
1.直线x=a与函数y=f(x)的图象至多有1个交点.2.在函数的定义中,非空数集A,B,A即为函数的定义域,值域为B的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.
判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( )(2)函数y=f(x)的图象可以是一条封闭曲线.( )(3)y=x0与y=1是同一个函数.( )
1.(多选)下列所给图象是函数图象的是
A中,当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象;B中,当x=x0时,y的值有两个,因此不是函数图象;CD中,每一个x的值对应唯一的y值,因此是函数图象.
y=x-1的定义域为R,y= 的定义域为{x|x≠-1},定义域不同,不是同一个函数,故选项A不正确;
例1 (1)函数y= 的定义域为A.(-4,-1) B.(-4,1)C.(-1,1) D.(-1,1]
(2)已知矩形的周长为定值a,设它的一条边长为x,则矩形面积的函数S=f(x)的定义域为A.(0,+∞) B.(0,a)
(1)求函数定义域,即求使解析式有意义的自变量x的取值集合;(2)若函数是由几个基本初等函数的和、差、积、商的形式构成的,定义域一般是各个基本初等函数定义域的交集;(3)具体求解时一般是列出自变量满足的不等式(组),得出不等式(组)的解集即可;(4)注意不要轻易对解析式化简变形,否则易出现定义域错误.
A.(1,3] B.(1,2)∪(2,3]C.(1,3)∪(3,+∞) D.(-∞,3)
所以1
例2 (1)已知f(1-sin x)=cs2x,求f(x)的解析式;
(换元法)设1-sin x=t,t∈[0,2],则sin x=1-t,∵f(1-sin x)=cs2x=1-sin2x,∴f(t)=1-(1-t)2=2t-t2,t∈[0,2].即f(x)=2x-x2,x∈[0,2].
∴f(x)=x2-2,x∈(-∞,-2]∪[2,+∞).
(待定系数法)∵f(x)是一次函数,可设f(x)=ax+b(a≠0),∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17.即ax+(5a+b)=2x+17,
(3)已知f(x)是一次函数且3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.
∴f(x)的解析式是f(x)=2x+7.
函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法.
跟踪训练2 (1)已知f(x-1)=x2+4x-5,则f(x)的解析式是A.f(x)=x2+6x B.f(x)=x2+8x+7C.f(x)=x2+2x-3 D.f(x)=x2+6x-10
f(x-1)=x2+4x-5,设x-1=t,x=t+1,则f(t)=(t+1)2+4(t+1)-5=t2+6t,故f(x)=x2+6x.
由题意得当x>0时,f(x)=f(x-4),所以f(10)=f(6)=f(2)=f(-2)=lg24=2.
例3 (1)(2023·成都模拟)已知函数f(x)= 则f(10)等于
[-3,-1)∪[4,+∞)
解得a=-2或a=5.若f(a)≥2,
解得-3≤a<-1或a≥4,∴a的取值范围是[-3,-1)∪[4,+∞).
分段函数求值问题的解题思路(1)求函数值:当出现f(f(a))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.
跟踪训练3 (1)已知f(x)=
_____________.
当x≤0时,x+1≤1,
当0
∴函数f(x)的定义域为(2,3)∪(3,+∞).
2.(2023·三明模拟)已知集合A={x|-2
4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h,注水时间为t,则下面选项中最符合h关于t的函数图象的是
水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快,由图可知选项A符合.
A.0或1 B.-1或1C.0或-2 D.-2或-1
令f(a)=t,则f(t)=2,可得t=0或t=1,当t=0时,即f(a)=0,显然a≤0,因此a+2=0⇒a=-2,当t=1时,即f(a)=1,显然a≤0,因此a+2=1⇒a=-1,综上所述,a=-2或-1.
7.(多选)下列四个函数,定义域和值域相同的是
A.y=-x+1 B.
对A,函数的定义域和值域都是R;对B,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R;对C,函数的定义域为(-∞,0)∪(0,+∞),值域为R;
所以ABD是定义域和值域相同的函数.
8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数”,则下列对应法则f满足函数定义的有A.f(x2)=|x| B.f(x2)=xC.f(cs x)=x D.f(ex)=x
令t=ex(t>0),f(t)=ln t,故D符合函数定义.
所以f(f(-3))=f(27)=lg327-2=3-2=1.
10.已知f( )=x-1,则f(x)=___________.
所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).
(0,1)∪(1,2]
要使函数f(x)有意义,
故f(x)的定义域为(0,1)∪(1,2].
12.(2023·广州质检)已知函数f(x)= 的值域为R,则实
数a的取值范围是________.
∵当x≥1时,f(x)=ln x≥ln 1=0,又f(x)的值域为R,故当x<1时,f(x)的值域包含(-∞,0).
13.(2022·广州模拟)已知定义在R上的函数f(x)满足,f(1-x)+2f(x)=x2+1,则f(1)等于
∵定义在R上的函数f(x)满足,f(1-x)+2f(x)=x2+1,∴当x=0时,f(1)+2f(0)=1,①当x=1时,f(0)+2f(1)=2,②②×2-①,得3f(1)=3,解得f(1)=1.
作出函数f(x)的图象,如图所示.因为f(a-3)=f(a+2),且a-315.高斯是德国著名的数学家,是近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f(x)= ,则函数y=[f(x)]的值域为A.{0,1,2,3} B.{0,1,2}C.{1,2,3} D.{1,2}
当1
2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.6二次函数与幂函数课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.6二次函数与幂函数课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,y=xα,奇函数,偶函数,即p0,解得a=-4,当a0时等内容,欢迎下载使用。
2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.7指数与指数函数课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.7指数与指数函数课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,ar+s,ars,arbr,0+∞,增函数,减函数,例1计算等内容,欢迎下载使用。
2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.2函数的单调性与最值课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.2函数的单调性与最值课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,单调递增,单调递减,函数的最值,fx≤M,fx0=M,fx≥M,-11等内容,欢迎下载使用。