![2023年人教版数学九年级上册《25.3 用频率估计概率》分层练习(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14819133/0-1694514728469/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年人教版数学九年级上册《25.3 用频率估计概率》分层练习(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/14819133/0-1694514728525/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年人教版数学九年级上册《25.3 用频率估计概率》分层练习(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/14819133/0-1694514728550/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学人教版九年级上册25.3 用频率估计概率精品达标测试
展开
这是一份初中数学人教版九年级上册25.3 用频率估计概率精品达标测试,共13页。试卷主要包含了3 用频率估计概率》分层练习等内容,欢迎下载使用。
2023年人教版数学九年级上册《25.3 用频率估计概率》分层练习基础巩固练习一 、选择题1.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的2.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?( )A.8只 B.12只 C.18只 D.30只3.口袋里有除颜色不同外其它都相同的红、蓝、白三种颜色的小球共30个,摸到红球的概率是,摸到蓝球的概率是,则袋子里有白球( )个.A.15 B.10 C.5 D.64.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )A.12 B.9 C.4 D.35.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4 C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃 D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上6.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )A.12个 B.14个 C.18个 D.28个7.市蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为( )A.0.95 B.0.9 C.0.85 D.0.88.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )A.甲组 B.乙组 C.丙组 D.丁组9.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A.20 B.24 C.28 D.3010.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是( )A.0.620 B.0.618 C.0.610 D.1000二 、填空题11.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为 .12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为 个.13.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .14.下表记录了某种幼树在一定条件下移植成活情况.移植总数n4001 5003 5007 0009 00014 000成活数m3251 3363 2036 3358 07312 628成活的频率0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1).15.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.5016.下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1).三 、解答题17.某商人制成了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖3元;若指针指向字母“C”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么? 18.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少? 19.小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为________;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率. 20.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸1个球,摸到1个红球就得到1个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.(1)求参加此次活动得到玩具的频率;(2)请你估计袋中白球的数量接近多少. 能力提升练习一 、选择题1.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃2.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表可知该队员一次投篮命中的概率大约是( )A.0.9 B.0.8 C.0.7 D.0.723.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个 B.50个 C.40个 D.30个4.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞出200条鱼.若在这200条鱼中有5条鱼是有记号的,则估计鱼塘中的鱼有( )A.3000条 B.2200条 C.1200条 D.600条5.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过96.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是( )转动转盘的次数n1001502005008001000落在“铅笔”区域的次数m68108140355560690落在“铅笔”区域的频率m/n0.680.720.700.710.700.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒二 、填空题7.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .8.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (精确到0.01).9.在对某次实验数据整理的过程中,某个事件出现的频率随实验次数变化的折线图如图所示,这个图形中折线的变化特点是 ;,试举出一个大致符合这个特点的实物实验的例子(指出关注的结果) 。10.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计.用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,那么据此可估计π的值为 .(用含m,n的式子表示) 三 、解答题11.某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:(1)求m,n的值;(2)该校学生家庭总数为500,学校决定按比例在B、C、D类家庭中抽取家长组成培训班,其比例为B类20%,C、D类各取60%,请你估计该培训班的家庭数;(3)若在C类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出C类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率. 12.甲、乙两同学开展“投球进筐”比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③计分规则如下:a. 得分为正数或0; b. 若8次都未投进,该局得分为0;c. 投球次数越多,得分越低;d.6局比赛的总得分高者获胜 .(1)设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;(2) 若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜. 答案基础巩固练习1.D.2.B.3.C.4.A.5.B.6.A.7.B8.D9.D10.B.11.答案为:.12.答案为:24.13.答案为:100.14.答案为:0.9.15.答案为:0.5.16.答案为:0.9.17.解:商人盈利的可能性大PA=80×=40(次);PB=80×=10(次);PC=80×=30(次);理由:商人盈利:(元)商人亏损: =60(元).因为80>60所以商人盈利的可能性大.18.解:(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;(2)0.31;(3)0.31;(4)0.319.解:(1)①∵试验中“5点朝上”的次数为20,总次数为60,∴此次试验中“5点朝上”的频率为=.②小红的说法不正确.理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才会慢慢接近概率.而她们的试验次数太少,没有代表性,∴小红的说法不正确.(2)列表如下:小红和小颖123456123456723456783456789456789105678910116789101112由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,∴两枚骰子朝上的点数之和为7时的概率最大,为=.20.解:(1)参加此次活动得到玩具的频率为=0.2.(2)设袋中共有m个球,则P(摸到1个球是红球)=,∴=0.2,解得m=40,经检验,m=40是原方程的解,且符合题意.∴袋中白球的数量接近40-8=32(个).能力提升练习1.C2.D.3.C4.C5.D6.D7.答案为:100.8.答案为:0.90.9.答案为:随着实验次数增加,频率趋于稳定于50%;抛掷一枚硬币实验中关注正面出现的频率。10.答案为:.11.解:(1)参与调查的家庭数==40(个).B所占的百分比==65%,所以m=65%×40=26(个),n=40﹣(8+26+4)=2(个);(2)C、D所占的百分比=1﹣20%﹣65%=15%,培训班家庭数=500×65%×20%+500×15%×60%=110(个)答:该培训班的家庭数是110个;(3)设城镇家庭为A1,农村家庭为B1,B2,B3,画树状图如下:所有可能结果有12种,其中有一个城镇家庭的结果有6种,设随机抽查2个家庭,其中有一个是城镇家庭为事件E,则P(E)==.12.解:(1)计分方案如下表:n(次)1234]5678M(分)87654321(用公式或语言表述正确,同样给分.)(2) 根据以上方案计算得6局比赛,甲共得24分,乙共得分23分,所以甲在这次比赛中获胜.
相关试卷
这是一份人教版九年级上册25.3 用频率估计概率达标测试,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册25.3 用频率估计概率优秀课后测评,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级上册25.3 用频率估计概率同步测试题,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)