2023年人教版数学九年级上册《旋转》单元复习卷(基础版)(含答案)
展开2023年人教版数学九年级上册
《旋转》单元复习卷(基础版)
一 、选择题(本大题共12小题)
1.下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
2.下列图形是轴对称图形而不是中心对称图形的是( )
A. B. C. D.
3.如图,△ABC与△A′B′C′成中心对称,则下列说法不正确的是( )
A.S△ACB=S△A′B′C′
B.AB=A′B′
C.AB∥A′B′,A′C′∥AC,BC∥B′C′
D.S△A′B′O=S△ACO
4.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为( )
A.(﹣2,1) B.(2,﹣1) C.(2,1) D.(﹣2,﹣1)
5.在下列几何图形中:
(1)两条互相平分的线段;
(2)两条互相垂直的直线;
(3)两个有公共顶点的角;
(4)两个有一条公共边的正方形.
其中是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
6.已知点P(3a﹣9,1﹣a)是第三象限的点,且横坐标、纵坐标均为整数,若P、Q关于原点对称,点Q的坐标为( )
A.(﹣3,﹣1) B.(3,1) C.(1,3) D.(﹣1,﹣3)
7.如图,小慧用如图的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图形中,符合胶滚滚出的图案是( )
A. B. C. D.
8.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )
A.36° B.54° C.72° D.108°
9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(2,2) B.(-2,4) C.(-2,2) D.(-2,2)
10.下列四个图形中,图中的一个矩形是由另一个矩形按顺时针方向旋转90°后所形成的 是( )
A.①② B.②③ C.①④ D.②④
11.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是( )
A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)
C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
12.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为( )
A. B. C.2﹣ D.2﹣
二 、填空题(本大题共6小题)
13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是______.
14.在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a-b的值为________.
15.如图,已知△ABC与△ADE是成中心对称的两个图形,点A是对称中心,点B的对称点为点 .
16.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为 度.
17.将图(1)中的大正方形绕着其中心顺时针至少旋转 度时,可变成图(2).
18.如图,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点共有 个.
三 、作图题(本大题共1小题)
19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),
(1)在图1中,图①经过一次 变换(填“平移”或“旋转”或“轴对称”)可以得到图②;
(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点 (填“A”或“B”或“C”);
(3)在图2中画出图①绕点A顺时针旋转90°后的图④.
四 、解答题(本大题共7小题)
20.如图,正方形ABCD与正方形A1B1C1D1关于某点成中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标.
(2)写出顶点B,C,B1,C1的坐标.
21.如图,△ABC与△DEC关于点C成中心对称,连结AE,BD.
(1)线段AE,BD具有怎样的位置关系和大小关系?请说明理由.
(2)如果△ABC的面积为a(cm2),求四边形ABDE的面积.
22.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.
(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?
解:图形A的最小旋转角是 度,它 中心对称图形.
图形B的最小旋转角是 度,它 中心对称图形.
图形C的最小旋转角是 度,它 中心对称图形.
图形D的最小旋转角是 度,它 中心对称图形.
图形E的最小旋转角是 度,它 中心对称图形.
23.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
(1)求证:四边形ABEF是平行四边形;
(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.
24.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.
(1)求点P与点P′之间的距离;
(2)求∠APB的大小.
25.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′B′C′D′,在这个旋转过程中:
①旋转中心是什么?
②若旋转角为45°,边CD与A′D′交于F,求DF的长度.
26.如图,在等腰直角三角形ABC中,∠BAC=90°,P是△ABC内一点,PA=1,PB=3,PC=.
求∠CPA的度数.
答案
1.D.
2.C
3.D
4.B
5.C
6.B
7.A.
8.C.
9.D.
10.D
11.A.
12.C.
13.答案为:4.
14.答案为:1
15.答案为:D
16.答案为:15°
17.答案为:270.
18.答案为:3.
19.解:(1)图①经过一次平移变换可以得到图②;
(2)图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A;
(3)如图.
20.解:(1)根据对称中心的性质可得对称中心是D1D的中点,
∵点D1,D的坐标分别是(0,3),(0,2),
∴对称中心的坐标是(0,2.5).
(2)∵点A,D的坐标分别是(0,4),(0,2),
∴正方形ABCD与正方形A1B1C1D1的边长都是4-2=2,
∴点B,C的坐标分别是(-2,4),(-2,2).
∵A1D1=2,点D1的坐标是(0,3),
∴点A1的坐标是(0,1),
∴点B1,C1的坐标分别是(2,1),(2,3).
21.解:(1)AE//BD且AE=BD.理由如下:
∵△ABC与△DEC关于点C成中心对称,
∴AC=DC,BC=EC,A,C,D三点共线,B,C,E三点共线,
∴∠ACE=∠DCB.
在△ACE与△DCB中,
∵
∴△ACE≌△DCB(SAS),
∴AE=DB,∠EAC=∠BDC,
∴AE∥BD.
(2)易知S△ABC=S△BCD=S△CDE=S△ACE,
又∵△ABC的面积为a(cm2),
∴四边形ABDE的面积为4a(cm2).
22.解:(1)如图所示,
(2)图形A的最小旋转角是60度,它是中心对称图形.
图形B的最小旋转角是72度,它不是中心对称图形.
图形C的最小旋转角是72度,它不是中心对称图形.
图形D的最小旋转角是120度,它不是中心对称图形.
图形E的最小旋转角是90度,它是中心对称图形.
故答案为:60,是;72,不是;72,不是;120,不是;90,是.
23.证明:(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,
∴△ABC≌△EFC,
∴CA=CE,CB=CF,
∴四边形ABEF是平行四边形;
(2)解:当∠ABC=60°时,四边形ABEF为矩形,
理由是:∵∠ABC=60°,AB=AC,
∴△ABC是等边三角形,
∴AB=AC=BC,
∵CA=CE,CB=CF,
∴AE=BF,
∵四边形ABEF是平行四边形,
∴四边形ABEF是矩形.
24.解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC
∴∠P′AP=∠BAC=60°,
∴△P′AP是等边三角形,
∴PP′=6;
(2)∵P′B=PC=10,PB=8,
∴P′B2=P′P2+PB2,
∴△P′PB为直角三角形,且∠P′PB=90°,
∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.
25.解:①旋转中心为B点.
②如图所示:
∵旋转角为45°,
∴∠ABA′=45°.
∵四边形ABCD为正方形,
∴∠ABD=45°,∠A′DF=45°.
∴∠ABA′=∠ABD.
∴点B、A′、D三点在一条直线上.
在Rt△ABD中,BD=2.
∵A′D=BD﹣BA′,
∴A′D=2﹣2.
在Rt△A′DF中,DF=4﹣2.
26.解:将△APB绕点A逆时针旋转90°到△AQC的位置,连结PQ,则易得△APQ为等腰直角三角形,且△AQC≌△APB,
∴QA=PA=1,QC=PB=3.
∵△APQ为等腰直角三角形,
∴PQ2=PA2+AQ2=2,∠APQ=45°.
在△CPQ中,PC2+PQ2=7+2=9=QC2,
∴∠QPC=90°,
∴∠CPA=∠QPC+∠APQ=135°.