所属成套资源:2024贵阳高三上学期开学考试(新)及答案(九科)
2024贵阳高三上学期开学考试数学试题含解析
展开
这是一份2024贵阳高三上学期开学考试数学试题含解析,文件包含贵州省贵阳市2024届高三上学期8月摸底考试数学试题含解析docx、贵州省贵阳市2024届高三上学期8月摸底考试数学试题无答案docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
贵阳市2024届高三年级摸底考试试卷数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将姓名、报名号、座位号用钢笔填写在答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.请保持答题卡平整,不能折叠.考试结束后,监考老师将试通卷、答题卡一并收回.第Ⅰ卷(选择题 共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合是目要求的.1. 已知全集,集合,,则下图阴影部分所对应的集合为( )A. B. C. 或 D. 2. 已知(为虚数单位),则( )A. 1 B. C. 2 D. 3. 2023年5月,浙江卫视《奔跑吧11》第四期节目打卡爽爽的贵阳城.周深在内的兄弟团成员和以刘宇等为成员的INTO1组合与来自贵阳社会各界的400位青年一起在贵州大学体育馆唱响了一场“青春歌会”.节目组在前期准备工作中统计出了排名靠前的10首人们喜欢的赞颂青春的歌曲.在活动中,兄弟团成员要从这10首歌曲中竞猜排名前5名的歌曲,则在竞猜中恰好猜对2首歌曲的概率为( )A. B. C. D. 4. 已知等差数列的前项和为.若,,则( )A. B. C. D. 5. 如图,在中,点为线段的中点,点是线段上靠近的三等分点,则( ) A. B. C. D. 6. 转子发动机采用三角转子旋转运动来控制压缩和排放.如图,三角转子的外形是有三条侧棱的曲面棱柱,且侧棱垂直于底面,底面是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆构成的曲面三角形,正三角形的顶点称为曲面三角形的顶点,侧棱长为曲面棱柱的高,记该曲面棱柱的底面积为S,高为h,已知曲面棱柱的体积,若,,则曲面棱柱的体积为( )A. B. C. D. 7. 直线经过抛物线的焦点,且与抛物线交于,两点.若,则( )A. 4 B. C. 8 D. 8. 已知,,,则( )A. B. C. D. 二、选择题:本题共4个小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知二项式展开式中各项的系数的和为128,则下列结论中正确的有( )A. 展开式共有7项 B. 所有二项式系数的和为128C. 只有第4项的二项式系数最大 D. 展开式的常数项为10. 声音是由物体振动产生的声波,纯音的数学模型是函数,我们听到的声音是由纯音合成,称为复合音.若一个复合音的数学模型是函数,则下列结论中正确的是( )A. 奇函数 B. 在区间内有最大值C. 的周期是 D. 在区间内有一个零点11. 已知曲线:焦点为,,点为曲线上一动点,则下列叙述正确的是( )A. 若,则的内切圆半径的最大值为B. 若,则曲线的焦点坐标分别是,C. 若曲线的离心率为,则或D. 若曲线是双曲线,且一条渐近线的倾斜角为,则12. 如图,一块边长为正方形铁片上有四个以为顶点的全等的等腰三角形(如图1),将这4个等腰三角形裁下来,然后用余下的四块阴影部分沿虚线折叠,使得,重合,,重合,,重合,,重合,,,,重合为点,得到正四棱锥(如图2).则在正四棱锥中,以下结论正确的是( )
A. 平面平面B. 平面C. 当时,该正四棱锥内切球的表面积为D. 当正四棱锥的体积取到最大值时,第Ⅱ卷(非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13. 已知角的顶点在坐标原点,始边与轴的非负半轴重合,点在角的终边上,则______.14. 已知随机变量,其中,则___________.15. 若函数在存在单调递减区间,则a的取值范围为________.16. 如图,、两点分别在、轴上滑动,,为垂足,点轨迹形成“四叶草”的图形,若,则的面积最大值为______.四、解答题:共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤.17. 设为数列的前项和.已知.(1)证明:数列是等比数列;(2)设,求数列的前项和.18. 在锐角中,角、、所对的边分别为、、.①;②;③.在以上三个条件中选择一个,并作答.(1)求角;(2)已知的面积为,是边上的中线,求的最小值.19. 某校高一、高二、高三年级的学生人数之比为3:3:4,三个年级的学生都报名参加公益志愿活动,经过选拔,高一年级有的学生成为公益活动志愿者,高二、高三年级各有的学生成为公益活动志愿者.(1)设事件“在三个年级中随机抽取的1名学生是志愿者”;事件“在三个年级中随机抽取1名学生,该生来自高年级”().请完成下表中不同事件的概率:事件概率概率值 (2)若在三个年级中随机抽取1名学生是志愿者,根据以上表中所得数据,求该学生来自于高一年级概率.20. 如图,是正三角形,四边形是矩形,平面平面,平面,点为中点,,.(1)设直线为平面与平面的交线,求证:;(2)若三棱锥的体积为,求平面与平面夹角的余弦值.21. 在直角坐标平面内,已知,,动点满足条件:直线与直线斜率之积等于,记动点的轨迹为.(1)求的方程;(2)过直线:上任意一点作直线与,分别交于,两点,则直线是否过定点?若是,求出该点坐标;若不是,说明理由.22. 牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程的其中一个根在的附近,如图所示,然后在点处作的切线,切线与轴交点的横坐标就是,用代替重复上面的过程得到;一直继续下去,得到,,,……,.从图形上我们可以看到较接近,较接近,等等.显然,它们会越来越逼近.于是,求近似解的过程转化为求,若设精度为,则把首次满足的称为的近似解.
已知函数,.(1)当时,试用牛顿迭代法求方程满足精度近似解(取,且结果保留小数点后第二位);
相关试卷
这是一份贵州省贵阳市2024届高三上学期开学考试数学,共11页。
这是一份2024贵阳清华中学高三上学期10月月考数学试题含解析,文件包含Unit13WeretryingtosavetheearthSectionB3a-Selfcheckpptx、核心素养目标人教版初中英语九年级全册Unit13WeretryingtosavetheearthSectionB3a-Selfcheck教案docx、核心素养目标人教版初中英语九年级全册Unit13WeretryingtosavetheearthSectionB3a-Selfcheck同步练习docx、HwVideoEditor_2021_04_12_233133681mp4等4份课件配套教学资源,其中PPT共38页, 欢迎下载使用。
这是一份2024贵阳一中高三上学期高考适应性月考数学试题含解析,文件包含贵州省贵阳第一中学2023-2024学年高三上学期高考适应性月考数学试题含解析docx、贵州省贵阳第一中学2023-2024学年高三上学期高考适应性月考数学试题无答案docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。