![江苏专版2023_2024学年新教材高中数学第4章数列午练26数列奇偶项问题苏教版选择性必修第一册01](http://img-preview.51jiaoxi.com/3/3/14827559/0-1694650362856/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学苏教版 (2019)选择性必修第一册第4章 数列4.1 数列同步练习题
展开A. 1 121B. 1 122C. 1 123D. 1 124
2. 已知数列满足,则.
3. 已知数列为等差数列,,,数列为各项均为正数的等比数列,,.
(1) 求数列和的通项公式;
(2) 若求数列的前项和.
4. 已知数列{满足,
(1) 求证:;
(2) 设,求{的前项和.
5. 已知数列{的各项均为正数,且,.
(1) 求{的通项公式;
(2) 设,求.
6. 已知数列{中,,,其中为常数.
(1) 若,,成等比数列,求的值;
(2) 若,求数列{的前项和.
午练26 数列奇偶项问题
1. C
2. 50
3. (1) 解 设数列的公差为,数列的公比为.因为,所以令,得,即.又,所以.因为,,所以解得或(舍去),所以.
(2) 由(1)得,所以.
4. (1) 证明由题意,,,所以,所以,即.
(2) 解 由(1)可知,数列的奇数项成等差数列,所以,所以.又因为,所以,所以数列是等比数列,所以,所以.
5. (1) 解 由,得,而,,因此,即数列是首项,公差的等差数列,所以数列的通项公式为.
(2) 由(1)知,,则有,所以.
6. (1) 解 由,得,,,所以,,.因为,,成等比数列,所以,即,又,所以.
(2) 当时,.当为偶数时,;当为奇数时,.
综上,
数学苏教版 (2019)4.1 数列课时作业: 这是一份数学苏教版 (2019)4.1 数列课时作业,共3页。试卷主要包含了 已知数列{满足,等内容,欢迎下载使用。
选择性必修第一册4.1 数列当堂达标检测题: 这是一份选择性必修第一册4.1 数列当堂达标检测题,共4页。试卷主要包含了 若数列的前项和为,则的值为, 已知数列的前项和为,且等内容,欢迎下载使用。
苏教版 (2019)选择性必修第一册4.1 数列习题: 这是一份苏教版 (2019)选择性必修第一册4.1 数列习题,共3页。试卷主要包含了 已知数列满足,,则, 已知数列的前项和为,且满足等内容,欢迎下载使用。