搜索
    上传资料 赚现金
    英语朗读宝

    广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题

    广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题第1页
    广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题第2页
    广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题

    展开

    这是一份广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题,共10页。试卷主要包含了圆M,设,,,则,下列命题中,正确的命题是,已知抛物线C等内容,欢迎下载使用。
    2024届广西名校开学考试试题数学(考试时间:150分钟    满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、单选题:共8小题,每小题5分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则    A B C D2.若复数z满足,则在复平面内复数z所对应的点位于    A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数是奇函数,则    A B C D24.已知数列是公比为正数的等比数列,是其前n项和,,则    A15 B31 C63 D75.圆M,圆N,则两圆的一条公切线方程为    A  BC  D6.某中学体育节中,羽毛球单打12强中有3个种子选手,将这12人任意分成3个组(每组4个人),则3个种子选手恰好被分在同一组的分法种数为    A210 B105 C315 D6307.圆的底面圆半径,侧面的平面展开图的面积为,则此圆锥的体积为    A B C D8.设,则    A B C D二、多选题:共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错得0分.9.下列命题中,正确的命题是    A.数据45678的第80百分位数为7B.若经验回归方程为时,则变量xy负相关C.对于随机事件AB,若,则AB相互独立D.某学习小组调查5名男生和5名女生的成绩,其中男生成绩的平均数为9,方差为13;女生成绩的平均数为7,方差为10,则该10人成绩的方差为10.510.已知抛物线C的焦点为F,过F的直线与C交于AB两点,且Ax轴上方,过AB分别作C的准线的垂线,垂足分别为,则    A.若A的纵坐标为3,则BC.准线方程为D.以为直径的圆与直线相切于F11.已知四面体的四个面均为直角三角形,其中平面,且.若该四面体的体积为,则    A平面  B.平面平面C的最小值为3  D.四面体外接球的表面积的最小值为12.函数的两个极值点分别是,则下列结论正确的是(    A  BC  D三、填空题:本题共4小题,每小题5分,共20分.13的展开式中的系数为________14.已知,则________15.函数上恰有2个零点,则的取值范围是________16.已知椭圆C的左、右焦点分别为PC,若,则C的离心率为________四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本题10分)已知数列满足:,数列是以4为公差的等差数列.1)求数列的通项公式;2)记数列的前n项和为,求的值.18.(本题12分)在中,角ABC的对边分别是abc,且1)求的值;2)若D是线段上的一点,求的最小值.19.(本题12分)四边形为菱形,平面1)设中点为,证明:平面2)求平面与平面的夹角的大小.20.(本题12分)某研究小组为研究经常锻炼与成绩好差的关系,从全市若干所学校中随机抽取100名学生进行调查,其中有体育锻炼习惯的有45人.经调查,得到这100名学生近期考试的分数的频率分布直方图.记分数在600分以上的为优秀,其余为合格.1)请完成下列列联表.根据小概率值的独立性检验,分析成绩优秀与体育锻炼有没有关系. 经常锻炼不经常锻炼合计合格25  优秀 10 合计  1002)现采取分层抽样的方法,从这100人中抽取10人,再从这10人中随机抽取5人进行进一步调查,记抽到5人中优秀的人数为X,求X的分布列.附:,其中0.0500.0100.001k3.8416.63510.82821.(本题12分)已知双曲线C一个焦点F到渐近线的距离为1)求双曲线C的方程;2)过点的直线与双曲线C的右支交于AB两点,在x轴上是否存在点N,使得为定值?如果存在,求出点N的坐标及该定值;如果不存在,请说明理由.22.(本题12分)已知函数1)当时,讨论在区间上的单调性;2)若当时,,求a的取值范围. 2024届广西名校开学考试试题数学参考答案一、单选题:共8小题,每小题5分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的.1,则,故选:D2.由,对应点坐标为在第二象限.故选:B3.函数为奇函数,,解得,选C4.设公比为,解得,故,选A5.设切线,得,则;另两条切线与直线平行且相距为1,又由,设切线,则,得,则,选C63个种子选手分在同一组的方法有种,故选:C7.设母线为,展开图,高,选A8.构造上单调递减,又,即,又,故,选B二、多选题:共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错得0分.9.对于A,由于,则45678的第50百分位数为,故A错;对于B,若方程为时,则变量xy负相关,故B正确;对于C,若,则有,可得,则AB相互独立,故C正确;对于D10人的成绩平均,则10人的方差,故D错;选BC10.抛物线的焦点,准线,故C正确;设直线,则,联立方程,消y得:,则AA错;对B不互垂直,B错误;D的中点到直线的距离,又,故以为直径的圆与直线相切于FD正确;故选:CD11.如图,将四面体补全为长方体,因为平面平面,所以,又,所以平面,故A正确;因为平面,所以,又因为平面平面平面平面,则即为二面角的平面角,因为为锐角,即二面角为锐二面角,故B不对;设,得,当且仅当时等号成立,,故C正确.设四面体外接球的半径为,则,当且仅当时等号成立,所以,即四面体外接球的表面积的最小值为,故D正确.故选:ACD12.对于A,定义域为,令上有两个不等实根,,故A正确;对于B,由韦达得,故B错误;对于C,由C正确;对于D,令,令,即函数上单调递减,,则函数上单调递减,于是,所以,故D正确;故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13的通项,令,则;令的展开式中的系数为,答案为9014,答案2215.化简得,又,得,因上恰有2个零点,,解得16O的中点,所以,故由,因为,所以,在中,,在中,,即,则,离心率为四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)根据题意可得·····························································2················································································4符合上式,所以···································································52·············································································7·················································································1018.(1)由条件得:·································································2所以,即,解得·····································································4,所以··········································································62)由,则······································································8的边上的高为h的面积:···········································································11B角,时,垂足在边上,即的最小值是···········································1219.(1)四边形为菱形,且,所以因为,所以·······································································2因为平面平面,所以······························································4平面所以平面·········································································52)设于点,取中点,连接,所以底面.以为原点,以分别为轴,轴,轴的正方向建立空间直角坐标系,因为,所以所以···································································6所以设平面的一个法向量为,则,令所以············································································8,平面的一个法向量为,令········································································10所以···········································································11所以平面与平面的夹角的大小为······················································1220.(1)填列联表 经常锻炼不经常锻炼合计合格254570优秀201030合计4555100·················································································2零假设:成绩是否优秀与是否经常体育锻炼无关················································································5根据小概率值的独立性检验,推断不成立,故成绩优秀与是否经常体育锻炼有关联····················································62)根据直方图大于600分的频率为,小于600分的频率为故由分层抽样知,抽取的10人中合格有人,优秀的为········································7则从这10人中随机抽取5人,优秀人数X服从超几何分布,由题意X的可能值为0123··············8·················································································11故分布列为X0123P·················································································1221.(1)由双曲线得渐近线方程为,设,则··············································2双曲线C方程为··································································42)依题意,直线的斜率不为0,设其方程为···········································5代入,设············································································7·················································································9若要上式为定值,则必须有,即······················································10·············································································11故存在点········································································1222.(1········································································1时,;当时,·····································································3上单调递增,在上单调递减;·······················································42)设········································································5,则,令,则,当,故函数单调递增,在单调递减,所以············································································7,可得,故单调递增时,···························································8时,,故上单调递增······························································9时,,且当时,,若,则函数上单调递增,因此,符合条件···················································10,则存在,使得,即时,,则上单调递减,此时,不符合条件.综上,实数的取值范围是······························································12 

    相关试卷

    广西壮族自治区“贵百河”名校2023-2024学年高二上学期12月联考数学试卷(含答案):

    这是一份广西壮族自治区“贵百河”名校2023-2024学年高二上学期12月联考数学试卷(含答案),共14页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年广西“贵百河”高二上学期12月新高考月考测试数学试题含答案:

    这是一份2023-2024学年广西“贵百河”高二上学期12月新高考月考测试数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,证明题,解答题等内容,欢迎下载使用。

    2023-2024学年广西壮族自治区高一上学期12月贵百河三市联考数学试题(含解析):

    这是一份2023-2024学年广西壮族自治区高一上学期12月贵百河三市联考数学试题(含解析),共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map