终身会员
搜索
    上传资料 赚现金
    专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编
    立即下载
    加入资料篮
    专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编01
    专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编02
    专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编03
    还剩49页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编

    展开
    这是一份专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编,共52页。

    专题04一次方程与方程组三年(2021-2023)中考数学真题分项汇编【全国通用】
    三年(2021−2023)中考数学真题分项汇编【全国通用】
    专题04一次方程与方程组
    一.选择题(共30小题)
    (2023•永州)
    1.关于x的一元一次方程的解为,则m的值为(    )
    A.3 B. C.7 D.

    (2023•眉山)
    2.已知关于的二元一次方程组的解满足,则m的值为(    )
    A.0 B.1 C.2 D.3

    (2022•株洲)
    3.对于二元一次方程组,将①式代入②式,消去可以得到(    )
    A. B.
    C. D.

    (2022•黔西南州)
    4.小明解方程的步骤如下:
    解:方程两边同乘6,得①
    去括号,得②
    移项,得③
    合并同类项,得④
    以上解题步骤中,开始出错的一步是(    )
    A.① B.② C.③ D.④

    (2022•青海)
    5.根据等式的性质,下列各式变形正确的是(    )
    A.若,则 B.若,则
    C.若,则 D.若,则

    (2022•铜仁市)
    6.为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为(    )
    A.14 B.15 C.16 D.17

    (2023•枣庄)
    7.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是(    )
    A. B.
    C. D.
    8.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行里,慢马每天行里,驽马先行天,快马几天可追上慢马?若设快马天可追上慢马,由题意得(    )
    A. B.
    C. D.

    (2023•成都)
    9.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺.问木长多少尺?设木长尺,则可列方程为(    )
    A. B.
    C. D.

    (2023•南充)
    10.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为(    )
    A. B.
    C. D.

    (2022•六盘水)
    11.我国“DF-41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF-41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行分钟能打击到目标,可以得到方程(    )
    A. B.
    C. D.

    (2023•岳阳)
    12.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x只鸡,y只兔.依题意,可列方程组为(    )
    A. B.
    C. D.

    (2023•绍兴)
    13.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为斛,小容器的容量为斛,则可列方程组是(    )
    A. B. C. D.

    (2023•温州)
    14.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为,,可列出方程为(    )
    A. B. C. D.

    (2023•宁波)
    15.茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为(   )
    A. B. C. D.

    (2023•巴中)
    16.某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为(    )
    A.6 B.8 C.12 D.16

    (2023•遂宁)
    17.《九章算术》是我国古代数学的经典书,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等;交易其一,金轻十三两.问金、银一枚各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可列方程组为(    )
    A. B.
    C. D.

    (2023•宜宾)
    18.“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是(  )
    A. B. C. D.

    (2023•台湾)
    19.已知某速食店贩售的套餐内容为一片鸡排和一杯可乐,且一份套餐的价钱比单点一片鸡排再单点一杯可乐的总价钱便宜40元,阿俊打算到该速食店买两份套餐,若他发现店内有单点一片鸡排就再送一片鸡排的促销活动,且单点一片鸡排再单点两杯可乐的总价钱,比两份套餐的总价钱便宜10元,则根据题意可得到下列哪一个结论(    )
    A.一份套餐的价钱必为140元 B.一份套餐的价钱必为120元
    C.单点一片鸡排的价钱必为90元 D.单点一片鸡排的价钱必为70元

    (2022•日照)
    20.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(    )
    A. B.
    C. D.

    (2022•通辽)
    21.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(    )

    A. B. C. D.

    (2022•深圳)
    22.张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为根,下等草一捆为根,则下列方程正确的是(    )
    A. B. C. D.

    (2022•辽宁)
    23.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x尺,木长y尺,所列方程组正确的是(    )
    A. B. C. D.
    24.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两,问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为(    )
    A. B.
    C. D.

    (2022•齐齐哈尔)
    25.端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有(    )
    A.2种 B.3种 C.4种 D.5种

    (2022•黑龙江)
    26.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?(    )
    A.5 B.6 C.7 D.8
    27.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有张桌子,有条凳子,根据题意所列方程组正确的是(    )
    A. B.
    C. D.

    (2022•宿迁)
    28.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是(    )
    A. B. C. D.

    (2022•宜昌)
    29.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为(    )
    A.30 B.26 C.24 D.22

    (2022•武汉)
    30.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是(    )

    A.9 B.10 C.11 D.12

    二.填空题(共12小题)
    (2022•无锡)
    31.二元一次方程组的解是 .

    (2023•丽水)
    32.古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝斤,干燥后耗损斤两(古代中国斤等于两).今有干丝斤,问原有生丝多少?”则原有生丝为 斤.
    33.我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花钱买了只鸡.若公鸡有8只,设母鸡有只,小鸡有只,可列方程组为 .

    (2022•宁夏)
    34.我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三人出七,不足四,问人数,物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,可列方程组为 .

    (2022•枣庄)
    35.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 两.

    (2022•贵阳)
    36.“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数,的系数与相应的常数项,即可表示方程,则 表示的方程是 .

    (2022•吉林)
    37.《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛.根据题意,可列方程组为 .

    (2022•绥化)
    38.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有 种购买方案.

    (2021•遵义)
    39.已知x,y满足的方程组是,则x+y的值为 .
    40.某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元/间,双人间140元/间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共 间;

    (2021•通辽)
    41.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长尺,竿长尺,则符合题意的方程组是

    (2021•邵阳)
    42.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是 钱.

    三.解答题(共18小题)
    (2023•陕西)
    43.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.

    (2023•自贡)
    44.某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.

    (2023•临沂)
    45.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.
    (1)这台M型平板电脑价值多少元?
    (2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?

    (2023•乐山)
    46.解二元一次方程组:

    (2023•台州)
    47.解方程组:

    (2023•安徽)
    48.根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨,乙地降价元,已知销售单价调整前甲地比乙地少元,调整后甲地比乙地少元,求调整前甲、乙两地该商品的销售单价.

    (2023•重庆)
    49.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.
    (1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?
    (2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?

    (2022•大连)
    50.2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?

    (2022•赤峰)
    51.某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.
    (1)请问A、B两种苗木各多少株?
    (2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?

    (2022•长沙)
    52.电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:
    (1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
    ①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.(    )
    ②刘三姐的姐妹们给出的答案是唯一正确的答案.(    )
    ③该歌词表达的数学题的正确答案有无数多种.(    )
    (2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.

    (2022•海南)
    53.我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.

    (2022•黑龙江)
    54.学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.
    (1)求购进一根A种跳绳和一根B种跳绳各需多少元?
    (2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?
    (3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?

    (2022•福建)
    55.在学校开展“劳动创造美好生活”主题系列活动中,某班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.
    (1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆
    (2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.

    (2022•雅安)
    56.某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.
    (1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)
    (2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.

    (2022•广元)
    57.为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.
    (1)科技类图书与文学类图书的单价分别为多少元?
    (2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?

    (2022•岳阳)
    58.为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,两种跳绳若干.若购买3根A种跳绳和1根种跳绳共需140元;若购买5根A种跳绳和3根种跳绳共需300元.
    (1)求,两种跳绳的单价各是多少元?
    (2)若该班准备购买,两种跳绳共46根,总费用不超过1780元,那么至多可以购买种跳绳多少根?

    (2021•黄石)
    59.我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:
    (1)笼中鸡、兔各有多少只?
    (2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?

    (2021•娄底)
    60.为了庆祝中国共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生.已知购买1个甲种纪念品和2个乙种纪念品共需20元,购买2个甲种纪念品和5个乙种纪念品共需45元.
    (1)求购买一个甲种纪念品和一个乙种纪念品各需多少元;
    (2)若要购买这两种纪念品共100个,投入资金不少于766元又不多于800元,问有多少种购买方案?并求出所花资金的最小值.




    参考答案:
    1.A
    【分析】把代入再进行求解即可.
    【详解】解:把代入得:,
    解得:.
    故选:A.
    【点睛】本题主要考查了一元一次方程的解,以及解一元一次方程,解题的关键是掌握使一元一次方程左右两边相等的未知数的值是一元一次方程的解,以及解一元一次方程的方法和步骤.
    2.B
    【分析】将方程组的两个方程相减,可得到,代入,即可解答.
    【详解】解:,
    得,

    代入,可得,
    解得,
    故选:B.
    【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.
    3.B
    【分析】将①式代入②式消去去括号即可求得结果.
    【详解】解:将①式代入②式得,

    故选B.
    【点睛】本题考查了代入消元法求解二元一次方程组,熟练掌握代入消元法是解题的关键.
    4.A
    【分析】按照解一元一次方程的一般步骤进行检查,即可得出答案.
    【详解】解:方程两边同乘6,得①
    ∴开始出错的一步是①,
    故选:A.
    【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.
    5.A
    【分析】根据等式的性质,一次判断各个选项,即可进行解答.
    【详解】解:A、若,则,故A正确,符合题意;
    B、若,且,则,故B不正确,不符合题意;
    C、若,则,故C不正确,不符合题意;
    D、若,则,故D不正确,不符合题意;
    故选:A.
    【点睛】本题主要考查了等式的性质,解题的关键是掌握:等式两边同时乘或除以一个不为0的数,等式仍成立.
    6.B
    【分析】设小红答对的个数为x个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.
    【详解】解:设小红答对的个数为x个,
    由题意得,
    解得,
    故选B.
    【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.
    7.D
    【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.
    【详解】解:设快马x天可以追上慢马,
    依题意,得: 240x-150x=150×12.
    故选:D.
    【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
    8.D
    【分析】设快马天可追上慢马,根据路程相等,列出方程即可求解.
    【详解】解:设快马天可追上慢马,由题意得
    故选:D.
    【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.
    9.A
    【分析】设木长尺,根据题意“用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺”,列出一元一次方程即可求解.
    【详解】解:设木长尺,根据题意得,

    故选:A
    【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.
    10.A
    【分析】设长木长为x尺,则绳子长为尺,根据“将绳子对折再度量长木,长木还剩余1尺”,可列出方程.
    【详解】设长木长为x尺,则绳子长为尺,根据题意,得

    故选:A
    【点睛】本题考查一元一次方程解决实际问题,理解题意,找出等量关系列出方程是解题的关键.
    11.D
    【分析】结合单位的换算,根据路程=速度时间建立方程即可得.
    【详解】解:因为1分钟秒,1公里米,
    所以可列方程为,
    故选:D.
    【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.
    12.C
    【分析】根据等量关系“鸡的只数兔的只数”和“2鸡的只数兔的只数”即可列出方程组.
    【详解】解:设有x只鸡,y只兔,
    由题意可得:,
    故选:C.
    【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.
    13.B
    【分析】设大容器的容积为x斛,小容器的容积为y斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x、y的二元一次方程组.
    【详解】解:设大容器的容积为x斛,小容器的容积为y斛,
    根据题意得:.
    故选:B.
    【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键.
    14.A
    【分析】根据碳水化合物、蛋白质与脂肪的含量共30g列方程.
    【详解】解:设蛋白质、脂肪的含量分别为,,则碳水化合物含量为,
    则:,即,
    故选A.
    【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.
    15.B
    【分析】根据某村有土地60公顷,计划将其中的土地种植蔬菜,得到种植茶园和种植粮食的面积为,结合茶园的面积比种粮食面积的2倍少3公顷,列出方程组即可.
    【详解】解:设茶园的面积为x公顷,种粮食的面积为y公顷,
    由题意,得:,
    即:
    故选B.
    【点睛】本题考查根据实际问题列方程组.找准等量关系,正确的列出方程组,是解题的关键.
    16.C
    【分析】设用x张卡纸做侧面,用y张卡纸做底面,则做出侧面的数量为2x,底面的数量为3y,然后根据等量关系:底面数量=侧面数量的2倍,列出方程组即可.
    【详解】解:设用x张白卡纸做侧面,用y张白卡纸做底面,
    由题意得,.
    解得.

    答:这些卡纸最多可以做成包装盒的个数为12个.
    故选:C.
    【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.还需注意本题的等量关系是:底面数量=侧面数量的2倍.
    17.C
    【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.
    【详解】解:设每枚黄金重x两,每枚白银重y两,根据题意得,
    .
    故选:C.
    【点睛】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.
    18.B
    【分析】根据题意,由设鸡有只,兔有只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.
    【详解】解:设鸡有只,兔有只,则由题意可得

    故选:B.
    【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.
    19.C
    【分析】设一片鸡排的价钱为x元,一杯可乐的价钱为y元,一份套餐的价钱为z元,根据题意列方程组求解即可.
    【详解】解:设一片鸡排的价钱为x元,一杯可乐的价钱为y元,一份套餐的价钱为z元,
    根据题意得:,
    得:,
    ∴一片鸡排的价钱为90元.
    故选:C.
    【点睛】本题主要考查了三元一次方程组的应用,设出未知数,根据题意找对等量关系是解决本题的关键.
    20.D
    【分析】设木头长为x尺,绳子长为y尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.
    【详解】解:设木头长为x尺,绳子长为y尺,
    由题意可得.
    故选:D.
    【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    21.B
    【分析】设人数为x人,物价为y钱,根据每人出8钱,会多出3钱可得方程,根据每人出7钱,又差4钱可得方程,据此列出方程组即可.
    【详解】解:设人数为x人,物价为y钱,
    由题意得,,
    故选B.
    【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,正确理解题意找到等量关系是解题的关键.
    22.C
    【分析】设上等草一捆为根,下等草一捆为根,根据“卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解.
    【详解】解:设上等草一捆为根,下等草一捆为根,根据题意得:

    故选:C
    【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
    23.C
    【分析】本题的等量关系是:绳长-木长=4.5,木长-绳长=1,据此可以列方程求解;
    【详解】设绳子长x尺,木长y尺,
    依题意可得:,
    故选:C
    【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列方程求解.
    24.C
    【分析】设马每匹两,牛每头两,根据“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”列出方程组,即可求解.
    【详解】解:设马每匹两,牛每头两,根据题意得:

    故选:C
    【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
    25.C
    【分析】设使用A食品盒x个,使用B食品盒y个,根据题意列出方程,求解即可.
    【详解】设使用A食品盒x个,使用B食品盒y个,
    根据题意得,8x+10y=200,
    ∵x、y都为正整数,
    ∴解得,,,,
    ∴一共有4种分装方式;
    故选:C.
    【点睛】本题考查了二元一次方程的实际问题,解题的关键是明确题意列出方程.
    26.A
    【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.
    【详解】解:设购买毛笔x支,围棋y副,根据题意得,
    15x+20y=360,即3x+4y=72,
    ∴y=18-x.
    又∵x,y均为正整数,
    ∴或或或或,
    ∴班长有5种购买方案.
    故选:A.
    【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.
    27.B
    【分析】根据四条腿的桌子和三条腿的凳子共12个可列方程x+y=12,根据桌子腿数与凳子腿数的和为40条可列方程4x+3y=40,组成方程组即可.
    【详解】解:根据题意可列方程组,

    故选:B.
    【点睛】本题考查实际问题抽出二元一次方程组,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
    28.B
    【分析】设该店有客房x间,房客y人;根据题意一房七客多七客,一房九客一房空得出方程组即可.
    【详解】解:设该店有客房x间,房客y人;
    根据题意得:,
    故选:B.
    【点睛】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.
    29.B
    【分析】设1艘大船与1艘小船分别可载x人,y人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x+y)即可.
    【详解】设1艘大船与1艘小船分别可载x人,y人,
    依题意:
    (①+②)÷3得:
    故选:B.
    【点睛】本题考查二元一次方程组的实际应用;注意本题解出(x+y)的结果即可.
    30.D
    【分析】根据题意设出相应未知数,然后列出等式化简求值即可.
    【详解】解:设如图表所示:
    根据题意可得:x+6+20=22+z+y,
    整理得:x-y=-4+z,
    x+22+n=20+z+n,20+y+m=x+z+m,
    整理得:x=-2+z,y=2z-22,
    ∴x-y=-2+z-(2z-22)=-4+z,
    解得:z=12,
    ∴x+y
    =3z-24
    =12
    故选:D.
    【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.
    31.
    【分析】利用加减消元法求解方程组即可.
    【详解】解:
    ②-①得:,
    解得:,
    将代入②得,
    解得:,
    ∴方程组的解为,
    故答案为:.
    【点睛】题目主要考查利用加减消元法解二元一次方程组,熟练掌握运算法则是解题关键.
    32.
    【分析】设原有生丝斤,根据题意列出方程,解方程即可求解.
    【详解】解:设原有生丝斤,依题意,

    解得:,
    故答案为:.
    【点睛】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.
    33.
    【分析】根据“现花钱买了只鸡”,列出方程组即可.
    【详解】解:依题意得:,
    故答案为:.
    【点睛】本题主要考查了二元一次方程组的应用.明确题意,准确列出方程组是解题的关键.
    34.
    【分析】设有x人,买此物的钱数为y,根据关键语句“人出八,盈三;人出七,不足四”列出方程组即可.
    【详解】解:设有x人,买此物的钱数为y,
    由题意得:,
    故答案:.
    【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    35.
    【分析】根据已知条件,设每头牛x两,每只羊y两,建立二元一次方程组求解可得.
    【详解】解:设每头牛x两,每只羊y两,
    根据题意,可得


    1头牛和1只羊共值金两,
    故答案为:.
    【点睛】本题考查二元一次方程组的实际应用.恰当利用已知条件找出等式关系,列出二元一次方程组是解本题的关键.
    36.
    【分析】根据横着的算筹为10,竖放的算筹为1,依次表示的系数与等式后面的数字,即可求解.
    【详解】解: 表示的方程是
    故答案为:
    【点睛】本题考查了列二元一次方程组,理解题意是解题的关键.
    37.
    【分析】根据题中两个等量关系:5个大桶加上1个小桶可以盛酒3斛;1个大桶加上5个小桶可以盛酒2斛,列出方程组即可.
    【详解】由题意得:
    故答案为:.
    【点睛】本题考查了列二元一次方程组解实际问题,理解题意、找到等量关系并列出方程组是解题的关键.
    38.3##三
    【分析】设购买甲种奖品x件,乙种奖品y件,列出关系式,并求出,由于,且x,y都是正整数,所以y是4的整数倍,由此计算即可.
    【详解】解:设:购买甲种奖品x件,乙种奖品y件,
    ,解得,
    ∵,且x,y都是正整数,
    ∴y是4的整数倍,
    ∴时,,
    时,,
    时,,
    时,,不符合题意,
    故有3种购买方案,
    故答案为:3.
    【点睛】本题考查列关系式,根据题意判断出y是4的整数倍是解答本题的关键.
    39.5.
    【分析】将方程组中的两个方程直接相减即可求解.
    【详解】解:
    用②﹣①得:x+y=5,
    故答案为:5.
    【点睛】本题考查二元一次方程组的解,熟练掌握二元一次方程组的解法,通过观察方程组中两个方程的特点,灵活计算是解题的关键.
    40.18.
    【分析】根据客房数×相应的收费标准=1310元列出方程并解答.
    【详解】解:设住了三人间普通客房x间,则住了两人间普通客房间,由题意,得:
    +=1310,
    解得:x=10,
    则:=8,
    所以,这个旅游团住了三人间普通客房10间,住了两人间普通客房8间,共18间.
    故答案为:18.
    【点睛】本题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,利用已知得出等式方程是解题关键.
    41.
    【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
    【详解】解:根据题意得:.
    故答案为:.
    【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    42.53
    【分析】设人数为,再根据两种付费的总钱数一样即可求解.
    【详解】解:设一共有人
    由题意得:
    解得:
    所以价值为:(钱)
    故答案是:53.
    【点睛】本题考查一元一次方程的应用,难度不大,属于基础题型.解题的关键是找准等量关系并准确表示.
    43.8元
    【分析】设该文具店中这种大笔记本的单价是x元,则小笔记本的单价是元,根据买了一种大笔记本4个和一种小笔记本6个,共用了元,列方程求解.
    【详解】解:设该文具店中这种大笔记本的单价是x元,则小笔记本的单价是元,
    由题意可得,
    解得:;
    答:该文具店中这种大笔记本的单价为8元.
    【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程解决问题.
    44.该客车的载客量为40人
    【分析】设该客车的载客量为人,由题意知,,计算求解即可.
    【详解】解:设该客车的载客量为人,
    由题意知,,
    解得,,
    ∴该客车的载客量为40人.
    【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意正确的列方程.
    45.(1)这台M型平板电脑的价值为元
    (2)她应获得元的报酬

    【分析】(1)设这台M型平板电脑的价值为元,根据题意,列出方程进行求解即可;
    (2)根据题意,列出代数式即可.
    【详解】(1)解:设这台M型平板电脑的价值为元,由题意,得:

    解得:;
    ∴这台M型平板电脑的价值为元;
    (2)解:由题意,得:;
    答:她应获得元的报酬.
    【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.
    46.
    【分析】采用加减消元法即可求解.
    【详解】解:①,得②,
    将②+③,得,
    解得.
    将代入①,
    得,
    ∴方程组的解为:.
    【点睛】本题主要考查了运用加减消元法解二元一次方程组的知识,掌握加减消元法是解答本题的关键.
    47.
    【分析】把两个方程相加消去y,求解x,再把x的值代入第1个方程求解y即可.
    【详解】解:
    ①+②,得.
    ∴.
    把代入①,得.
    ∴这个方程组的解是.
    【点睛】本题考查的是二元一次方程组的解法,熟练的利用加减消元法解方程组是解本题的关键.
    48.调整前甲、乙两地该商品的销售单价分别为元
    【分析】设调整前甲、乙两地该商品的销售单价分别为元,根据题意,列出二元一次方程组,解方程组即可求解.
    【详解】解:设调整前甲、乙两地该商品的销售单价分别为元,根据题意得,

    解得:
    答:调整前甲、乙两地该商品的销售单价分别为元
    【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
    49.(1)购买杂酱面80份,购买牛肉面90份
    (2)购买牛肉面60份

    【分析】(1)设购买杂酱面份,则购买牛肉面份,由题意知,,解方程可得的值,然后代入,计算求解,进而可得结果;
    (2)设购买牛肉面份,则购买杂酱面份,由题意知,,计算求出满足要求的解即可.
    【详解】(1)解:设购买杂酱面份,则购买牛肉面份,
    由题意知,,
    解得,,
    ∴,
    ∴购买杂酱面80份,购买牛肉面90份;
    (2)解:设购买牛肉面份,则购买杂酱面份,
    由题意知,,
    解得,
    经检验,是分式方程的解,
    ∴购买牛肉面60份.
    【点睛】本题考查了一元一次方程的应用,分式方程的应用.解题的关键在于根据题意正确的列方程.
    50.冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.
    【分析】设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个元,y元,再根据购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元,列方程组,再解方程组即可.
    【详解】解:设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个元,y元,则

    ②-①得
    把代入①得:
    解得:
    答:冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.
    【点睛】本题考查的是二元一次方程组的应用,理解题意,确定相等关系是解本题的关键.
    51.(1)A苗木的数量是2400棵,B苗木的数量是3600棵;
    (2)安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.

    【分析】(1)根据在基地上种植A,B两种苗木共6000株,A种苗木的数量比B种苗木的数量的一半多600株,可以列出相应的二元一次方程组,从而可以解答本题;
    (2)根据题意可以列出相应的分式方程,从而可以解答本题,最后要检验.
    【详解】(1)解:设A苗木的数量是x棵,则B苗木的数量是y棵,
    根据题意可得:,
    解得:,
    答:A苗木的数量是2400棵,B苗木的数量是3600棵;
    (2)解:设安排a人种植A苗木,则安排(350-a)人种植B苗木,
    根据题意可得:,
    解得,a=100,
    经检验,a=100是原方程的解,
    ∴350-a=250,
    答:安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.
    【点睛】本题考查二元一次方程组的应用以及分式方程的应用,解题的关键是明确题意,列出相应的二元一次方程组.
    52.(1)√,×,×
    (2)数量少的群里狗的数量为45只,狗的数量多且数量相同的群里狗的数量为85只

    【分析】(1)根据题意,姐妹们给出的答案是符合要求的;除此之外,还可分成97,97,97,9等,这里的每群狗的数量还需要是正整数,所以答案不是无数种,即可判断;
    (2)设数量少的狗群的数量为只,则狗的数量多且数量相同的群里狗的数量为只,根据狗的总数为300只,可列一元一次方程,求解即可.
    【详解】(1)根据题意,姐妹们给出的答案是符合要求的;除此之外,还可分成97,97,97,9等,
    刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案,
    ∵这里的每群狗的数量还需要是正整数,
    ∴答案不是无数种,
    ∴①√,②×,③×,
    故答案为:√,×,×;
    (2)设数量少的狗群的数量为只,则狗的数量多且数量相同的群里狗的数量为只,由题意得:

    解得,
    (只),
    所以,数量少的群里狗的数量为45只,狗的数量多且数量相同的群里狗的数量为85只.
    【点睛】本题考查了一元一次方程的实际应用,整式加减的运用,准确理解题意并熟练掌握知识点是解题的关键.
    53.每千克有机黑胡椒售价为50元,每千克有机白胡椒售价为60元
    【分析】设每千克有机黑胡椒售价为x元,每千克有机白胡椒售价为y元,根据题意列出关于x,y的二元一次方程组,解之即可得出结论;
    【详解】解:设每千克有机黑胡椒售价为x元,每千克有机白胡椒售价为y元.
    根据题意,得
    解得
    答:每千克有机黑胡椒售价为50元,每千克有机白胡椒售价为60元.
    【点睛】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.
    54.(1)购进一根A种跳绳需10元,购进一根B种跳绳需15元
    (2)有三种方案:方案一:购买A种跳绳23根,B种跳绳22根;方案二:购买A种跳绳24根,B种跳绳21根;方案三:购买A种跳绳25根,B种跳绳20根
    (3)方案三需要费用最少,最少费用是550元

    【分析】(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,可列方程组,解方程组即可求得结果;
    (2)根据题意可列出不等式组,解不等式组得到解集再结合m为正整数即可确定方案;
    (3)设购买跳绳所需费用为w元,根据题意,得,结合函数的性质,可知w随m的增大而减小,由此即可求得答案.
    【详解】(1)解:设购进一根A种跳绳需x元,购进一根B种跳绳需y元,
    根据题意,得,
    解得,
    答:购进一根A种跳绳需10元,购进一根B种跳绳需15元;
    (2)根据题意,得,
    解得,
    ∵m为整数,∴m可取23,24,25.
    ∴有三种方案:方案一:购买A种跳绳23根,B种跳绳22根;
    方案二:购买A种跳绳24根,B种跳绳21根;
    方案三:购买A种跳绳25根,B种跳绳20根;
    (3)设购买跳绳所需费用为w元,根据题意,得
    ∵,
    ∴w随m的增大而减小,
    ∴当时,w有最小值,即w(元)
    答:方案三需要费用最少,最少费用是550元.
    【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.
    55.(1)购买绿萝38盆,吊兰8盆
    (2)369元

    【分析】(1)设购买绿萝x盆,吊兰y盆,根据购买绿萝和吊兰两种绿植共46盆,将预算经费390元全部用于购买绿萝和吊兰,列出二元一次方程组,解方程组即可得出结论;
    (2)设购买绿萝m盆,则吊兰盆,根据绿萝盆数不少于吊兰盆数的2倍,得出关于m的一元一次不等式,求出m取值范围,再设购买两种绿植总费用为W元,列出函数表达式,利用一次函数的性质,即可解决问题.
    【详解】(1)设购买绿萝x盆,吊兰y盆,
    由题意,得,
    解得:,
    ∵,
    ∴符合题意,
    答:购买绿萝38盆,吊兰8盆.
    (2)设购买绿萝m盆,则吊兰盆,
    由题意,得,
    解得:,
    设购买两种绿植总费用为W元,则

    ∵,
    ∴W随m的增大而增大,
    又∵,且m为整数,
    ∴当时,W取得最小值,

    答:购买两种绿植总费用的最小值为369元.
    【点睛】本题主要考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的性质,解题的关键是(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出W关于m的函数表达式.
    56.(1)A,B两种商品每件进价分别为每件100元,每件60元.
    (2)利润w(元)与m(件)的函数关系式为:

    【分析】(1)设A,B两种商品每件进价分别为每件x元,每件y元,则根据购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元,列方程组,再解方程组即可;
    (2)由总利润等于销售A,B两种商品的利润之和列函数关系式即可.
    【详解】(1)解:设A,B两种商品每件进价分别为每件x元,每件y元,则

    解得:,
    答:A,B两种商品每件进价分别为每件100元,每件60元.
    (2)解:由题意可得:


    即总利润w(元)与m(件)的函数关系式为:
    【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,确定相等关系列方程或函数关系是解本题的关键.
    57.(1)科技类图书的单价为38元,文学类图书的单价为26元.
    (2)社区至少要准备2700元购书款.

    【分析】(1)设科技类图书的单价为x元,文学类图书的单价为y元,然后根据题意可列出方程组进行求解;
    (2)设社区需要准备w元购书款,购买科技类图书m本,则文学类图书有(100-m)本,由(1)及题意可分当时,当时及当时,进而问题可分类求解即可.
    【详解】(1)解:设科技类图书的单价为x元,文学类图书的单价为y元,由题意得:
    ,解得:;
    答:科技类图书的单价为38元,文学类图书的单价为26元.
    (2)解:设社区需要准备w元购书款,购买科技类图书m本,则文学类图书有(100-m)本,由(1)可得:
    ①当时,则有:,
    ∵12>0,
    ∴当m=30时,w有最小值,即为;
    ②当时,则有:,
    ∵-1<0,对称轴为直线,
    ∴当时,w随m的增大而减小,
    ∴当m=50时,w有最小值,即为;
    ③当时,此时科技类图书的单价为(元),则有,
    ∵2>0,
    ∴当m=51时,w有最小值,即为;
    综上所述:社区至少要准备2700元的购书款.
    【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.
    58.(1)A种跳绳的单价为30元,种跳绳的单价为50元
    (2)至多可以购买种跳绳20根

    【分析】(1)设种跳绳的单价为元,种跳绳的单价为元.由题意:若购买3根种跳绳和1根种跳绳共需元;若购买5根A种跳绳和3根种跳绳共需300元.列出二元一次方程组,解方程组即可;
    (2)设购买种跳绳根,则购买A种跳绳根,由题意:总费用不超过1780元,列出一元一次不等式,解不等式即可.
    【详解】(1)解:设A种跳绳的单价为元,种跳绳的单价为元.
    根据题意得:,
    解得:,
    答:A种跳绳的单价为30元,种跳绳的单价为50元.
    (2)设购买种跳绳根,则购买A种跳绳根,
    由题意得:,
    解得:,
    答:至多可以购买种跳绳20根.
    【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出不等关系,正确列出一元一次不等式.
    59.(1)鸡有23只,兔有12只;(2)这笼鸡兔最多值3060元,最少值2060元.
    【分析】(1)设笼中有x只鸡,y只兔,根据上有35个头、下有94只脚,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设笼中有m只鸡,n只兔,总价值为w,根据“笼中鸡兔至少30只且不超过40只”列出不等式,再根据“鸡每只值80元,兔每只值60元”得到一元一次函数,利用函数的性质解答即可.
    【详解】(1)解:设笼中有x只鸡,y只兔,
    根据题意得:,
    解得:.
    答:鸡有23只,兔有12只;
    (2)设笼中有m只鸡,n只兔,总价值为w元,
    根据题意得:,即,
    ∵,即,
    解得:,
    ∴,
    整理得:,
    ∵,
    ∴随的增大而减少,
    ∴当时,有最大值,最大值为3060,
    当时,有最小值,最小值为2060,
    答:这笼鸡兔最多值3060元,最少值2060元.
    【点睛】本题考查了二元一次方程组的应用,一次函数的应用,不等式的应用,理清题中的数量关系并掌握一次函数的性质是解题的关键.
    60.(1)购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)共有7种进货方案;所花资金的最小值为770元.
    【分析】(1)设购进甲种纪念品每个需要x元,乙种纪念品每个需要y元,根据“购买1个甲种纪念品和2个乙种纪念品共需20元;购买2个甲种纪念品和5个乙种纪念品共需45元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设购进甲种纪念品m个,则购进乙种纪念品(100-m)个,所花资金为元,根据总价=单价×数量得到关于m的函数解析式,结合进货资金不少于766元且不超过800元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再由m为整数即可找出各进货方案,利用一次函数的性质从而得出答案.
    【详解】解:(1)设购进甲种纪念品每个需要x元,乙种纪念品每个需要y元,
    根据题意得:,
    解得:;
    答:购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;
    (2)设购进甲种纪念品m个,则购进乙种纪念品(100-m)个,所花资金为元,
    ∴,
    根据题意得:,
    解得:53.2≤m≤60.
    ∵m为整数,
    ∴m=54、55、56、57、58、59或60.
    ∴共有7种进货方案;
    ∵5>0,
    ∴随m的增大而增大,
    ∴m=54时,有最小值,最小值为770元.
    【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数量间的关系,正确列出关于m的函数解析式和一元一次不等式组.

    相关试卷

    专题04一次方程与方程组(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】: 这是一份专题04一次方程与方程组(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题04一次方程与方程组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题04一次方程与方程组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    专题04一次方程与方程组(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】: 这是一份专题04一次方程与方程组(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题04一次方程与方程组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题04一次方程与方程组优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    专题31图形的旋转:三年(2021-2023)中考数学真题分项汇编: 这是一份专题31图形的旋转:三年(2021-2023)中考数学真题分项汇编,共140页。试卷主要包含了如图,在中,,,等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map