|课件下载
搜索
    上传资料 赚现金
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件
    立即下载
    加入资料篮
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件01
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件02
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件03
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件04
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件05
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件06
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件07
    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件08
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件

    展开
    这是一份2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件,共46页。PPT课件主要包含了-fx等内容,欢迎下载使用。

    考试要求:1.了解函数的奇偶性的概念及几何意义.2.结合三角函数,了解函数的周期性、对称性及其几何意义.
    必备知识·回顾教材重“四基”
    一、教材概念·结论·性质重现1.函数的奇偶性的定义
    2.函数图象的对称性(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.
    3.函数的周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=_______,那么函数f(x)就叫做周期函数.非零常数__就叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个_____的正数,那么这个最小正数就叫做f(x)的最小正周期(若不加特别说明,T一般都是指最小正周期).
    4.对称性与周期的关系(1)若函数f(x)的图象关于直线x=a和直线x=b对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(3)若函数f(x)的图象关于点(a,0)和直线x=b对称,则函数f(x)必为周期函数,4|a-b|是它的一个周期.
    周期函数定义的实质存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.
    二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)若函数f(x)为奇函数,则一定有f(0)=0.(  )(2)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.(  )(3)如果函数f(x),g(x)是定义域相同的偶函数,那么F(x)=f(x)+g(x)是偶函数.(  )(4)若T为y=f(x)的一个周期,则nT(n∈Z)是函数f(x)的周期.(  )
    5.(多选题)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是(  )A.y=f(|x|)B.y=f(-x)C.y=xf(x)D.y=f(x)+xBD 解析:由奇函数的定义f(-x)=-f(x)验证.对于选项A,f(|-x|)=f(|x|),为偶函数;对于选项B,f(-(-x))=f(x)=-f(-x),为奇函数;对于选项C,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;对于选项D,f(-x)+(-x)=-[f(x)+x],为奇函数.故选BD.
    关键能力·研析考点强“四翼”
    考点1 函数的奇偶性——基础性
    考点2 函数的周期性——综合性
    考点3 函数性质的综合应用——应用性
    1.(多选题)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则下列结论中正确的是(  )A.函数f(g(x))是偶函数B.函数g(f(x))是偶函数C.函数f(x)·g(x)是奇函数D.函数f(x)+g(x)是奇函数
    ABC 解析:对于选项A,f(g(x))是偶函数,A正确;对于选项B,g(f(x))是偶函数,B正确;对于选项C,设h(x)=f(x)g(x),h(-x)=f(-x)g(-x)=-f(x)·g(x)=-h(x)是奇函数;对于选项D,f(x)+g(x)不一定具备奇偶性.故选ABC.
    2.设f(x)为奇函数,且当x≥0时,f(x)=ex-1,则当x<0时,f(x)=(  )A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1D 解析:当x<0时,-x>0.因为当x≥0时,f(x)=ex-1,所以 f(-x)=e-x-1. 又因为 f(x)为奇函数,所以 f(x)=-f(-x)=-e-x+1.
    (1)解决这类问题要优先考虑用定义法,然后考虑用图象法.(2)有些题目,如第1题利用在公共定义域内奇函数、偶函数的和、差、积的奇偶性来判断.
    例1 (1)设f(x)是周期为3的函数,当1≤x≤3时,f(x)=2x+3,则f(8)=_______.当-2≤x≤0时,f(x)=___________.7 2x+9 解析:因为f(x)是周期为3的函数,所以f(8)=f(2)=2×2+3=7.当-2≤x≤0时,f(x)=f(x+3)=2(x+3)+3=2x+9.
    函数周期性有关问题的求解策略(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T.(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论.若T是函数的周期,则kT(k∈Z,且k≠0)也是函数的周期.
    1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为(  )A.6B.7 C.8D.9
    B 解析:因为f(x)是最小正周期为2的周期函数,且0≤x<2时,f(x)=x3-x=x(x-1)(x+1),所以当0≤x<2时,f(x)=0有两个根,即x1=0,x2=1.由周期函数的性质知,当2≤x<4时,f(x)=0有两个根,即x3=2,x4=3;当4≤x≤6时,f(x)=0有三个根,即x5=4,x6=5,x7=6,故f(x)的图象在区间[0,6]上与x轴的交点个数为7.
    2.(多选题)(2022·长春质检)已知定义在R上的奇函数f(x)满足f(x)+f(2-x)=0,则下列结论正确的是(  )A.f(x)的图象关于点(1,0)对称B.f(x+2)=f(x)C.f(3-x)=f(x-1)D.f(x-2)=f(x)
    ABD 解析:对于A,由f(x)+f(2-x)=0得f(x)的图象关于点(1,0)对称,选项A正确;对于B,用-x替换f(x)+f(2-x)=0中的x,得f(-x)+f(2+x)=0,所以f(x+2)=-f(-x)=f(x),选项B正确;对于C,用x-1替换f(x)+f(2-x)=0中的x,得f(3-x)=-f(x-1),选项C错误;对于D,用x-2替换f(x+2)=f(x)中的x,得f(x-2)=f(x),选项D正确.
    3.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=_________.6 解析:因为f(x+4)=f(x-2),所以f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),所以f(x)是周期为6的周期函数,所以f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,所以f(1)=f(-1)=6,即f(919)=6.
    考向1 函数的单调性与奇偶性综合例2 (1)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-lg25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为(  )A.alg25.1>2>20.8,且a=g(-lg25.1)=g(lg25.1),所以g(3)> g(lg25.1)>g(20.8),即c>a>b.
    单调性与奇偶性综合的解题策略1.利用偶函数在关于原点对称的区间上单调性相反、奇函数在关于原点对称的区间上单调性相同,实现不等式的等价转化.2.注意偶函数的性质f(x)=f(|x|)的应用.
    考向2 函数的奇偶性与周期性结合例3 (1)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+4)=f(x).当x∈[0,2]时,f(x)=2x-x2,则f(2 023)=_________.-1 解析:因为f(x+4)=f(x),所以函数f(x)的周期T=4. 又f(1)=1,所以f(2 023)=f(-1+4×506)=f(-1)=-f(1)=-1.
    (2)(2022·新高考Ⅱ卷) 若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)·f(y),f(1)=1,则
    A.-3B.-2C.0D.1
    A 解析:因为f(x+y)+f(x-y)=f(x)f(y),令x=1,y=0可得,2f(1)=f(1)·f(0),所以f(0)=2,令x=0可得,f(y)+f(-y)=2f(y),即f(y)=f(-y),所以函数f(x)为偶函数,令y=1得,f(x+1)+f(x-1)=f(x)·f(1)=f(x),即有f(x+2)+f(x)=f(x+1),从而可知f(x+2)=-f(x-1),即有f(x+3)=-f(x),所以f(x)=f(x+6),所以函数f(x)的一个周期为6.因为f(2)=f(1)-f(0)=1-2=-1,f(3)=f(2)-f(1)=-1-1=-2,f(4)=f(-2)=f(2)=-1,f(5)=f(-1)=f(1)=1,f(6)=f(0)=2,所以一个周期内的f(1)+f(2)+…+f(6)=0.因为22除以6余4,所以
    =f(1)+f(2)+f(3)+f(4)=1-1-2-1=-3.故选A.
    若本例(1)中的条件不变,当x∈[2,4]时,f(x)的解析式是_______.f(x)=x2-6x+8 解析:当x∈[-2,0]时,-x∈[0,2].由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2. 所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.
    函数周期性有关问题的求解方法(1)求解与函数的周期性有关的问题,应根据题目特征及周期的定义求出函数的周期.(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.
    考向3 函数的单调性、奇偶性与周期性结合例4 定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[-1,0]上单调递减.设a=f(-2.8),b=f(-1.6),c=f(0.5),则a,b,c的大小关系是(  )A.a>b>cB.c>a>bC.b>c>aD.a>c>bD 解析:因为偶函数f(x)满足f(x+2)=f(x),所以函数f(x)的周期为2.所以a=f(-2.8)=f(-0.8),b=f(-1.6)=f(0.4)=f(-0.4),c=f(0.5)=f(-0.5).因为-0.8<-0.5<-0.4,且函数f(x)在[-1,0]上单调递减,所以a>c>b.故选D.
    1.解决这类问题一定要充分利用数形结合思想,使问题变得直观、形象,进而顺利求解.2.在解题时,往往需要借助函数的奇偶性和周期性来确定另一个区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
    1.已知函数f(x)的图象关于原点对称,且周期为4.若f(-2)=2,则f(2 022)=(  )A.2B.0C.-2D.-4C 解析:因为函数f(x)的图象关于原点对称,且周期为4,所以f(x)为奇函数,所以f(2 022)=f(505×4+2)=f(2)=-f(-2)=-2.故选C.
    2.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为(  )A.(-∞,-3)B.(3,+∞)C.(-∞,-1)D.(1,+∞)D 解析:因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,所以f(-2)=f(2),所以f(7)=f(2)>1,所以a>1,即a∈(1,+∞).故选D.
    3.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=_________.2 解析:根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x).又函数f(x)为奇函数,则f(-x)=-f(x),所以f(x)=-f(6-x)=f(x-12).所以f(x)的最小正周期是12.故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.
    相关课件

    2024版高考数学一轮总复习第2章函数第3节函数的奇偶性与周期性课件: 这是一份2024版高考数学一轮总复习第2章函数第3节函数的奇偶性与周期性课件,共46页。

    高考数学一轮复习第2章第3节函数的奇偶性与周期性课件: 这是一份高考数学一轮复习第2章第3节函数的奇偶性与周期性课件,共56页。PPT课件主要包含了-fx,×√√×,考点1考点2考点3等内容,欢迎下载使用。

    新高考数学一轮复习课件 第2章 §2.3 函数的奇偶性、周期性与对称性: 这是一份新高考数学一轮复习课件 第2章 §2.3 函数的奇偶性、周期性与对称性,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map