2024届高考数学一轮复习第2章第3节函数的奇偶性与周期性课件
展开考试要求:1.了解函数的奇偶性的概念及几何意义.2.结合三角函数,了解函数的周期性、对称性及其几何意义.
必备知识·回顾教材重“四基”
一、教材概念·结论·性质重现1.函数的奇偶性的定义
2.函数图象的对称性(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.
3.函数的周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=_______,那么函数f(x)就叫做周期函数.非零常数__就叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个_____的正数,那么这个最小正数就叫做f(x)的最小正周期(若不加特别说明,T一般都是指最小正周期).
4.对称性与周期的关系(1)若函数f(x)的图象关于直线x=a和直线x=b对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(3)若函数f(x)的图象关于点(a,0)和直线x=b对称,则函数f(x)必为周期函数,4|a-b|是它的一个周期.
周期函数定义的实质存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.
二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)若函数f(x)为奇函数,则一定有f(0)=0.( )(2)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )(3)如果函数f(x),g(x)是定义域相同的偶函数,那么F(x)=f(x)+g(x)是偶函数.( )(4)若T为y=f(x)的一个周期,则nT(n∈Z)是函数f(x)的周期.( )
5.(多选题)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是( )A.y=f(|x|)B.y=f(-x)C.y=xf(x)D.y=f(x)+xBD 解析:由奇函数的定义f(-x)=-f(x)验证.对于选项A,f(|-x|)=f(|x|),为偶函数;对于选项B,f(-(-x))=f(x)=-f(-x),为奇函数;对于选项C,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;对于选项D,f(-x)+(-x)=-[f(x)+x],为奇函数.故选BD.
关键能力·研析考点强“四翼”
考点1 函数的奇偶性——基础性
考点2 函数的周期性——综合性
考点3 函数性质的综合应用——应用性
1.(多选题)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则下列结论中正确的是( )A.函数f(g(x))是偶函数B.函数g(f(x))是偶函数C.函数f(x)·g(x)是奇函数D.函数f(x)+g(x)是奇函数
ABC 解析:对于选项A,f(g(x))是偶函数,A正确;对于选项B,g(f(x))是偶函数,B正确;对于选项C,设h(x)=f(x)g(x),h(-x)=f(-x)g(-x)=-f(x)·g(x)=-h(x)是奇函数;对于选项D,f(x)+g(x)不一定具备奇偶性.故选ABC.
2.设f(x)为奇函数,且当x≥0时,f(x)=ex-1,则当x<0时,f(x)=( )A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1D 解析:当x<0时,-x>0.因为当x≥0时,f(x)=ex-1,所以 f(-x)=e-x-1. 又因为 f(x)为奇函数,所以 f(x)=-f(-x)=-e-x+1.
(1)解决这类问题要优先考虑用定义法,然后考虑用图象法.(2)有些题目,如第1题利用在公共定义域内奇函数、偶函数的和、差、积的奇偶性来判断.
例1 (1)设f(x)是周期为3的函数,当1≤x≤3时,f(x)=2x+3,则f(8)=_______.当-2≤x≤0时,f(x)=___________.7 2x+9 解析:因为f(x)是周期为3的函数,所以f(8)=f(2)=2×2+3=7.当-2≤x≤0时,f(x)=f(x+3)=2(x+3)+3=2x+9.
函数周期性有关问题的求解策略(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T.(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论.若T是函数的周期,则kT(k∈Z,且k≠0)也是函数的周期.
1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为( )A.6B.7 C.8D.9
B 解析:因为f(x)是最小正周期为2的周期函数,且0≤x<2时,f(x)=x3-x=x(x-1)(x+1),所以当0≤x<2时,f(x)=0有两个根,即x1=0,x2=1.由周期函数的性质知,当2≤x<4时,f(x)=0有两个根,即x3=2,x4=3;当4≤x≤6时,f(x)=0有三个根,即x5=4,x6=5,x7=6,故f(x)的图象在区间[0,6]上与x轴的交点个数为7.
2.(多选题)(2022·长春质检)已知定义在R上的奇函数f(x)满足f(x)+f(2-x)=0,则下列结论正确的是( )A.f(x)的图象关于点(1,0)对称B.f(x+2)=f(x)C.f(3-x)=f(x-1)D.f(x-2)=f(x)
ABD 解析:对于A,由f(x)+f(2-x)=0得f(x)的图象关于点(1,0)对称,选项A正确;对于B,用-x替换f(x)+f(2-x)=0中的x,得f(-x)+f(2+x)=0,所以f(x+2)=-f(-x)=f(x),选项B正确;对于C,用x-1替换f(x)+f(2-x)=0中的x,得f(3-x)=-f(x-1),选项C错误;对于D,用x-2替换f(x+2)=f(x)中的x,得f(x-2)=f(x),选项D正确.
3.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=_________.6 解析:因为f(x+4)=f(x-2),所以f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),所以f(x)是周期为6的周期函数,所以f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,所以f(1)=f(-1)=6,即f(919)=6.
考向1 函数的单调性与奇偶性综合例2 (1)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-lg25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )A.alg25.1>2>20.8,且a=g(-lg25.1)=g(lg25.1),所以g(3)> g(lg25.1)>g(20.8),即c>a>b.
单调性与奇偶性综合的解题策略1.利用偶函数在关于原点对称的区间上单调性相反、奇函数在关于原点对称的区间上单调性相同,实现不等式的等价转化.2.注意偶函数的性质f(x)=f(|x|)的应用.
考向2 函数的奇偶性与周期性结合例3 (1)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+4)=f(x).当x∈[0,2]时,f(x)=2x-x2,则f(2 023)=_________.-1 解析:因为f(x+4)=f(x),所以函数f(x)的周期T=4. 又f(1)=1,所以f(2 023)=f(-1+4×506)=f(-1)=-f(1)=-1.
(2)(2022·新高考Ⅱ卷) 若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)·f(y),f(1)=1,则
A.-3B.-2C.0D.1
A 解析:因为f(x+y)+f(x-y)=f(x)f(y),令x=1,y=0可得,2f(1)=f(1)·f(0),所以f(0)=2,令x=0可得,f(y)+f(-y)=2f(y),即f(y)=f(-y),所以函数f(x)为偶函数,令y=1得,f(x+1)+f(x-1)=f(x)·f(1)=f(x),即有f(x+2)+f(x)=f(x+1),从而可知f(x+2)=-f(x-1),即有f(x+3)=-f(x),所以f(x)=f(x+6),所以函数f(x)的一个周期为6.因为f(2)=f(1)-f(0)=1-2=-1,f(3)=f(2)-f(1)=-1-1=-2,f(4)=f(-2)=f(2)=-1,f(5)=f(-1)=f(1)=1,f(6)=f(0)=2,所以一个周期内的f(1)+f(2)+…+f(6)=0.因为22除以6余4,所以
=f(1)+f(2)+f(3)+f(4)=1-1-2-1=-3.故选A.
若本例(1)中的条件不变,当x∈[2,4]时,f(x)的解析式是_______.f(x)=x2-6x+8 解析:当x∈[-2,0]时,-x∈[0,2].由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2. 所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.
函数周期性有关问题的求解方法(1)求解与函数的周期性有关的问题,应根据题目特征及周期的定义求出函数的周期.(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.
考向3 函数的单调性、奇偶性与周期性结合例4 定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[-1,0]上单调递减.设a=f(-2.8),b=f(-1.6),c=f(0.5),则a,b,c的大小关系是( )A.a>b>cB.c>a>bC.b>c>aD.a>c>bD 解析:因为偶函数f(x)满足f(x+2)=f(x),所以函数f(x)的周期为2.所以a=f(-2.8)=f(-0.8),b=f(-1.6)=f(0.4)=f(-0.4),c=f(0.5)=f(-0.5).因为-0.8<-0.5<-0.4,且函数f(x)在[-1,0]上单调递减,所以a>c>b.故选D.
1.解决这类问题一定要充分利用数形结合思想,使问题变得直观、形象,进而顺利求解.2.在解题时,往往需要借助函数的奇偶性和周期性来确定另一个区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
1.已知函数f(x)的图象关于原点对称,且周期为4.若f(-2)=2,则f(2 022)=( )A.2B.0C.-2D.-4C 解析:因为函数f(x)的图象关于原点对称,且周期为4,所以f(x)为奇函数,所以f(2 022)=f(505×4+2)=f(2)=-f(-2)=-2.故选C.
2.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为( )A.(-∞,-3)B.(3,+∞)C.(-∞,-1)D.(1,+∞)D 解析:因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,所以f(-2)=f(2),所以f(7)=f(2)>1,所以a>1,即a∈(1,+∞).故选D.
3.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=_________.2 解析:根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x).又函数f(x)为奇函数,则f(-x)=-f(x),所以f(x)=-f(6-x)=f(x-12).所以f(x)的最小正周期是12.故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.
2024版高考数学一轮总复习第2章函数第3节函数的奇偶性与周期性课件: 这是一份2024版高考数学一轮总复习第2章函数第3节函数的奇偶性与周期性课件,共46页。
高考数学一轮复习第2章第3节函数的奇偶性与周期性课件: 这是一份高考数学一轮复习第2章第3节函数的奇偶性与周期性课件,共56页。PPT课件主要包含了-fx,×√√×,考点1考点2考点3等内容,欢迎下载使用。
新高考数学一轮复习课件 第2章 §2.3 函数的奇偶性、周期性与对称性: 这是一份新高考数学一轮复习课件 第2章 §2.3 函数的奇偶性、周期性与对称性,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。