2019年广西贵港市中考数学试卷及答案
展开1.计算(﹣1)3的结果是( )
A.﹣1B.1C.﹣3D.3
2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是( )
A. B. C. D.
3.若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是( )
A.9,9B.10,9C.9,9.5D.11,10
4.若分式的值等于0,则x的值为( )
A.±1B.0C.﹣1D.1
5.下列运算正确的是( )
A.a3+(﹣a)3=﹣a6B.(a+b)2=a2+b2 C.2a2•a=2a3 D.(ab2)3=a3b5
6.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是( )
A.1B.3C.5D.7
7.若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,则m等于( )
A.﹣2B.﹣3C.2D.3
8.下列命题中假命题是( )
A.对顶角相等 B.直线y=x﹣5不经过第二象限
C.五边形的内角和为540° D.因式分解x3+x2+x=x(x2+x)
9.如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是( )
A.40°B.50°C.60°D.70°
10.将一条宽度为2cm的彩带按如图所示的方法折叠,折痕为AB,重叠部分为△ABC(图中阴影部分),若∠ACB=45°,则重叠部分的面积为( )
A.2cm2B.2cm2C.4cm2D.4cm2
11.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为( )
A.2B.3C.2D.5
12.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是( )
A.S1+S2=CP2B.4F=2FDC.CD=4PDD.cs∠HCD=
二、填空题(本大题共6小题,每小题3分,共18分)
13.有理数9的相反数是 .
14.将实数3.18×10﹣5用小数表示为 .
15.如图,直线a∥b,直线m与a,b均相交,若∠1=38°,则∠2= .
16.若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是 .
17.如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 .
18.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是 .
三、解答题(本大题共8小题,满分66分)
19.(10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin30°;
(2)解不等式组:,并在数轴上表示该不等式组的解集.
20.(5分)尺规作图(只保留作图痕迹,不要求写出作法):
如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.
21.(6分)如图,菱形ABCD的边AB在x轴上,点A的坐标为(1,0),点D(4,4)在反比例函数y=(x>0)的图象上,直线y=x+b经过点C,与y轴交于点E,连接AC,AE.
(1)求k,b的值;(2)求△ACE的面积.
22.(8分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:
(1)填空:a= ,b= ,n= ;
(2)将频数分布直方图补充完整;
(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.
23.(8分)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.
(1)求这两年藏书的年均增长率;
(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?
24.(8分)如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.
25.(11分)如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.
(1)求抛物线的表达式;
(2)写出点M的坐标并求直线AB的表达式;
(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.
26.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数; ②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
2019年广西贵港市中考数学试卷答案
1. A.2. B.3. C.4. D.5. C.6. C.7. B.8. D.9. B.10. A.11. C.12. D.
13.﹣9;14. 0.0000318;15. 142°.16. .17. 18. 4
19.解:(1)原式=2﹣1+4﹣4×=2﹣1+4﹣2=3;
(2)解不等式6x﹣2>2(x﹣4),得:x>﹣,
解不等式﹣≤﹣,得:x≤1,
则不等式组的解集为﹣<x≤1,
将不等式组的解集表示在数轴上如下:
20.解:如图,
△DEF即为所求.
21.解:(1)由已知可得AD=5,
∵菱形ABCD,
∴B(6,0),C(9,4),
∵点D(4,4)在反比例函数y=(x>0)的图象上,
∴k=16,
将点C(9,4)代入y=x+b,
∴b=﹣2;
(2)E(0,﹣2),
直线y=x﹣2与x轴交点为(3,0),
∴S△AEC=2×(2+4)=6;
22.解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;
故答案为:10,25,0.25;
(2)补全频数分布直方图如图所示;
(3)2500××=90(人),
答:全校获得二等奖的学生人数90人.
23.解:(1)设这两年藏书的年均增长率是x,
5(1+x)2=7.2,
解得,x1=0.2,x2=﹣2.2(舍去),
答:这两年藏书的年均增长率是20%;
(2)在这两年新增加的图书中,中外古典名著有(7.2﹣5)×20%=0.44(万册),
到2018年底中外古典名著的册数占藏书总量的百分比是:×100%=10%,
答:到2018年底中外古典名著的册数占藏书总量的10%.
24.(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,
∵OE⊥OA,
∴∠AOE=90°,
∴∠BAO+∠AOB=∠AOB+∠COE=90°,
∴∠BAO=∠COE,
∴△ABO∽△OCE,
∴=,
∵OB=OC,
∴,
∵∠ABO=∠AOE=90°,
∴△ABO∽△AOE,
∴∠BAO=∠OAE,
过O作OF⊥AE于F,
∴∠ABO=∠AFO=90°,
在△ABO与△AFO中,,
∴△ABO≌△AFO(AAS),
∴OF=OB,
∴AE是半圆O的切线;
(2)解:∵AF是⊙O的切线,AC是⊙O的割线,
∴AF2=AP•AC,
∴AF==2,
∴AB=AF=2,
∵AC=6,
∴BC==2,
∴AO==3,
∵△ABO∽△AOE,
∴,
∴=,
∴AE=.
25.解:(1)函数表达式为:y=a(x=4)2+3,
将点B坐标代入上式并解得:a=﹣,
故抛物线的表达式为:y=﹣x2+4x﹣5;
(2)A(4,3)、B(0,﹣5),则点M(2,﹣1),
设直线AB的表达式为:y=kx﹣5,
将点A坐标代入上式得:3=4k﹣5,解得:k=2,
故直线AB的表达式为:y=2x﹣5;
(3)设点Q(4,s)、点P(m,﹣m2+4m﹣5),
①当AM是平行四边形的一条边时,
点A向左平移2个单位、向下平移4个单位得到M,
同样点P(m,﹣m2+4m﹣5)向左平移2个单位、向下平移4个单位得到Q(4,s),
即:m﹣2=4,﹣m2+4m﹣5﹣4=s,
解得:m=6,s=﹣3,
故点P、Q的坐标分别为(6,1)、(4,﹣3);
②当AM是平行四边形的对角线时,
由中点定理得:4+2=m+4,3﹣1=﹣m2+4m﹣5+s,
解得:m=2,s=1,
故点P、Q的坐标分别为(2,1)、(4,1);
故点P、Q的坐标分别为(6,1)或(2,1)、(4,﹣3)或(4,1).
26.(1)①解:旋转角为105°.
理由:如图1中,
∵A′D⊥AC,
∴∠A′DC=90°,
∵∠CA′D=15°,
∴∠A′CD=75°,
∴∠ACA′=105°,
∴旋转角为105°.
②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.
∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,
∴∠CEA′=120°,
∵FE平分∠CEA′,
∴∠CEF=∠FEA′=60°,
∵∠FCO=180°﹣45°﹣75°=60°,
∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,
∴△FOC∽△A′OE,
∴=,
∴=,
∵∠COE=∠FOA′,
∴△COE∽△FOA′,
∴∠FA′O=∠OEC=60°,
∴△A′OF是等边三角形,
∴CF=CA′=A′F,
∵EM=EC,∠CEM=60°,
∴△CEM是等边三角形,
∠ECM=60°,CM=CE,
∵∠FCA′=∠MCE=60°,
∴∠FCM=∠A′CE,
∴△FCM≌△A′CE(SAS),
∴FM=A′E,
∴CE+A′E=EM+FM=EF.
(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.
由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,
∴△A′EF≌△A′EB′,
∴EF=EB′,
∴B′,F关于A′E对称,
∴PF=PB′,
∴PA+PF=PA+PB′≥AB′,
在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,
∴B′M=CB′=1,CM=,
∴AB′===.
∴PA+PF的最小值为.
分数段(分)
频数(人)
频率
51≤x<61
a
0.1
61≤x<71
18
0.18
71≤x<81
b
n
81≤x<91
35
0.35
91≤x<101
12
0.12
合计
100
1
2019年广西贵港市中考数学试卷与答案: 这是一份2019年广西贵港市中考数学试卷与答案,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年广西贵港市中考数学试卷【含答案】: 这是一份2022年广西贵港市中考数学试卷【含答案】,共31页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。
2022年广西贵港市中考数学试卷及答案: 这是一份2022年广西贵港市中考数学试卷及答案,共6页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。