2019年广东省中考数学试卷-(4年中考)
展开
这是一份2019年广东省中考数学试卷-(4年中考),共28页。试卷主要包含了解答题,填空题等内容,欢迎下载使用。
1.﹣2的绝对值是( )
A.2B.﹣2C.D.±2
2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )
A.2.21×106 B.2.21×105C.221×103D.0.221×106
3.如图,由4个相同正方体组合而成的儿何体,它的左视图是( )
A. B. C. D.
4.下列计算正确的是( )
A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6
5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
6.数据3,3,5,8,11的中位数是( )
A.3B.4C.5D.6
7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是( )
A.a>bB.|a|<|b|C.a+b>0D.<0
8.化简的结果是( )
A.﹣4B.4C.±4D.2
9.已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是( )
A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2
10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有( )
A.1个B.2个C.3个D.4个
二.填空题(本大题6小题,每小题4分,共24分)
11.计算:20190+()﹣1= .
12.如图,已知a∥b,∠1=75°,则∠2= .
13.一个多边形的内角和是1080°,这个多边形的边数是 .
14.已知x=2y+3,则代数式4x﹣8y+9的值是 .
15.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 米(结果保留根号).
16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是 (结果用含a,b代数式表示).
三.解答题(一)(本大题3小题,每小题6分,共18分)
17.(6分)解不等式组:
18.(6分)先化简,再求值:(﹣)÷,其中x=.
19.(6分)如图,在△ABC中,点D是AB边上的一点.
(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.
四、解答题(二)(本大题3小题,每小题7分,共21分)
20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:
成绩等级频数分布表
(1)x= ,y= ,扇形图中表示C的圆心角的度数为 度;
(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.
21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.
(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?
(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?
22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.
(1)求△ABC三边的长;
(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.(9分)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).
(1)根据图象,直接写出满足kx+b>的x的取值范围;
(2)求这两个函数的表达式;
(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.
24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.
(1)求证:ED=EC;
(2)求证:AF是⊙O的切线;
(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.
25.(9分)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.
(1)求点A、B、D的坐标;
(2)求证:四边形BFCE是平行四边形;
(3)如图2,过项点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).
①求出一个满足以上条件的点P的横坐标;
②直接回答这样的点P共有几个?
2019年广东省中考数学试卷答案
1. A.2. B.3. A.4. C.5. C.6. C.7. D.8. B.9. D.10. C.
11. 4.12. 105°13. 8.14. 21.15.(15).16. a+8b.
17.解:
解不等式组①,得x>3
解不等式组②,得x>1
则不等式组的解集为x>3
18.解:原式=
=
当x=时,
原式==
19.解:(1)如图,∠ADE为所作;
(2)∵∠ADE=∠B
∴DE∥BC,
∴==2.
20.(1)随机抽男生人数:10÷25%=40(名),即y=40;
C等级人数:40﹣24﹣10﹣2=4(名),即x=4;
扇形图中表示C的圆心角的度数360°×=36°.
故答案为4,40,36;
(2)画树状图如下:
P(同时抽到甲,乙两名学生)==.
21.解:(1)设购买篮球x个,购买足球y个,
依题意得:.
解得.
答:购买篮球20个,购买足球40个;
(2)设购买了a个篮球,
依题意得:70a≤80(60﹣a)
解得a≤32.
答:最多可购买32个篮球.
22.解:(1)AB==2,
AC==2,
BC==4;
(2)由(1)得,AB2+AC2=BC2,
∴∠BAC=90°,
连接AD,AD==2,
∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.
23.解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).
由图象可得:kx+b>的x的取值范围是x<﹣1或0<x<4;
(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)
∴k2=﹣1×4=﹣4,k2=4n
∴n=﹣1
∴B(4,﹣1)
∵一次函数y=kx+b的图象过点A,点B
∴,解得:k=﹣1,b=3
∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;
(3)设直线AB与y轴的交点为C,
∴C(0,3),
∵S△AOC=×3×1=,
∴S△AOB=S△AOC+S△BOC=×3×1+×4=,
∵S△AOP:S△BOP=1:2,
∴S△AOP=×=,
∴S△COP=﹣=1,
∴×3•xP=1,
∴xP=,
∵点P在线段AB上,
∴y=﹣+3=,
∴P(,).
24.解:(1)∵AB=AC,
∴∠ABC=∠ACB,
又∵∠ACB=∠BCD,∠ABC=∠ADC,
∴∠BCD=∠ADC,
∴ED=EC;
(2)如图1,连接OA,
∵AB=AC,
∴=,
∴OA⊥BC,
∵CA=CF,
∴∠CAF=∠CFA,
∴∠ACD=∠CAF+∠CFA=2∠CAF,
∵∠ACB=∠BCD,
∴∠ACD=2∠ACB,
∴∠CAF=∠ACB,
∴AF∥BC,
∴OA⊥AF,
∴AF为⊙O的切线;
(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,
∴△ABE∽△CBA,
∴=,
∴AB2=BC•BE,
∴BC•BE=25,
∴AB=5,
如图2,连接AG,
∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,
∵点G为内心,
∴∠DAG=∠GAC,
又∵∠BAD+∠DAG=∠GDC+∠ACB,
∴∠BAG=∠BGA,
∴BG=AB=5.
25.解:(1)令x2+x﹣=0,
解得x1=1,x2=﹣7.
∴A(1,0),B(﹣7,0).
由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);
(2)证明:∵DD1⊥x轴于点D1,
∴∠COF=∠DD1F=90°,
∵∠D1FD=∠CFO,
∴△DD1F∽△COF,
∴=,
∵D(﹣3,﹣2),
∴D1D=2,OD=3,
∴D1F=2,
∴=,
∴OC=,
∴CA=CF=FA=2,
∴△ACF是等边三角形,
∴∠AFC=∠ACF,
∵△CAD绕点C顺时针旋转得到△CFE,
∴∠ECF=∠AFC=60°,
∴EC∥BF,
∵EC=DC==6,
∵BF=6,
∴EC=BF,
∴四边形BFCE是平行四边形;
(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),
①当点P在B点的左侧时,
∵△PAM与△DD1A相似,
∴或=,
∴=或=,
解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;
当点P在A点的右侧时,
∵△PAM与△DD1A相似,
∴=或=,
∴=或=,
解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);
当点P在AB之间时,
∵△PAM与△DD1A相似,
∴=或=,
∴=或=,
解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;
综上所述,点P的横坐标为﹣11或﹣或﹣;
②由①得,这样的点P共有3个.
2016年广东省中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.﹣2的相反数是( )
A.2B.﹣2C.D.﹣
2.如图所示,a与b的大小关系是( )
A.a<bB.a>bC.a=bD.b=2a
3.下列所述图形中,是中心对称图形的是( )
A.直角三角形B.平行四边形C.正五边形D.正三角形
4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( )
A.0.277×107B.0.277×108C.2.77×107D.2.77×108
5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( )
A.B.2C.+1D.2+1
6.某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( )
A.4000元B.5000元C.7000元D.10000元
7.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么csα的值是( )
A.B.C.D.
9.已知方程x﹣2y+3=8,则整式x﹣2y的值为( )
A.5B.10C.12D.15
10.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )
A.B.C.D.
二、填空题(共6小题,每小题4分,满分24分)
11.9的算术平方根是 .
12.分解因式:m2﹣4= .
13.不等式组的解集是 .
14.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是 cm(计算结果保留π).
15.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .
16.如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF= .
三、解答题(共3小题,每小题6分,满分18分)
17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.
18.(6分)先化简,再求值:•+,其中a=﹣1.
19.(6分)如图,已知△ABC中,D为AB的中点.
(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若DE=4,求BC的长.
四、解答题(共3小题,每小题7分,满分21分)
20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.
(1)求这个工程队原计划每天修建道路多少米?
(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?
21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.
22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人.
五、解答题(共3小题,每小题9分,满分27分)
23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).
(1)求k的值;
(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( );
(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.
24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.
2016年广东省中考数学试卷答案
1. A.2. A3. B.4. C.5. B.6. B.7. C.8. D.9. A10. C.
11. 3.12.(m+2)(m﹣2).13.﹣3<x≤1.14. 10π.15. .16. a.
17.解:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1
=3﹣1+2
=2+2
=4.
18.解:原式=•+=+==,
当a=﹣1时,原式===+1.
19.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.
(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,
∵DE=4,∴BC=8.
20.解:(1)设原计划每天修建道路x米,
可得:,
解得:x=100,
经检验x=100是原方程的解,
答:原计划每天修建道路100米;
(2)设实际平均每天修建道路的工效比原计划增加y%,
可得:,
解得:y=20,
经检验y=20是原方程的解,
答:实际平均每天修建道路的工效比原计划增加百分之二十.
21.解:解法一:在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°﹣30°=60°,
∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,
在Rt△ACD中,AC=a,
∴AD=a,
由勾股定理得:CD==,
同理得:FC=×=,CH=×=,
在Rt△HCI中,∠I=30°,∴HI=2HC=,
由勾股定理得:CI==,
解法二:∠DCA=∠B=30°,
在Rt△DCA中,cs30°=,
∴CD=AC•cs30°=a,
在Rt△CDF中,cs30°=,
CF=×a=a,
同理得:CH=cs30°CF=×a=a,
在Rt△HCI中,∠HIC=30°,
tan30°=,
CI=a÷=a;
答:CI的长为.
22.解:(1)这次活动一共调查学生:80÷32%=250(人);
(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),
补全条形图如图:
(3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°;
(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);
故答案为:(1)250;(3)108;(4)480.
23.解:(1)∵直线y=kx+1与双曲线y=(x>0)交于点A(1,m),
∴m=2,
把A(1,2)代入y=kx+1得:k+1=2,
解得:k=1;
(2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,则PA=1,OA=2,
∵点Q与点P关于直线y=x成轴对称,
∴直线y=x垂直平分PQ,
∴OP=OQ,
∴∠POA=∠QOB,
在△OPA与△OQB中,
,
∴△POA≌△QOB,
∴QB=PA=1,OB=OA=2,
∴Q(2,1);
故答案为:2,1;
(3)设抛物线的函数解析式为y=ax2+bx+c,
∵过P、Q二点的抛物线与y轴的交点为N(0,),
∴,
解得:,
∴抛物线的函数解析式为y=﹣x2+x+,
∴对称轴方程x=﹣=.
24.(1)证明:∵BC是⊙O的直径,
∴∠BAC=90°,
∵∠ABC=30°,
∴∠ACB=60°
∵OA=OC,
∴∠AOC=60°,
∵AF是⊙O的切线,
∴∠OAF=90°,
∴∠AFC=30°,
∵DE是⊙O的切线,
∴∠DBC=90°,
∴∠D=∠AFC=30°
∴∠DAE=∠ACF=120°,
∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,
∴∠CAF=30°,
∴∠CAF=∠AFC,
∴AC=CF
∴OC=CF,
∵S△AOC=,
∴S△ACF=,
∵∠ABC=∠AFC=30°,
∴AB=AF,
∵AB=BD,
∴AF=BD,
∴∠BAE=∠BEA=30°,
∴AB=BE=AF,
∴=,
∵△ACF∽△DAE,
∴=()2=,
∴S△DAE=,
过A作AH⊥DE于H,
∴AH=DH=DE,
∴S△ADE=DE•AH=וDE2=,
∴DE=;
(3)∵∠EOF=∠AOB=120°,
在△AOF与△BOE中,,
∴△AOF≌△BEO,
∴OE=OF,
∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,
过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,
在△AOF与△OGF中,,
∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.
25.(1)四边形APQD为平行四边形;
(2)OA=OP,OA⊥OP,理由如下:
∵四边形ABCD是正方形,
∴AB=BC=PQ,∠ABO=∠OBQ=45°,
∵OQ⊥BD,∴∠PQO=45°,
∴∠ABO=∠OBQ=∠PQO=45°,
∴OB=OQ,
在△AOB和△OPQ中,
∴△AOB≌△POQ(SAS),
∴OA=OP,∠AOB=∠POQ,
∴∠AOP=∠BOQ=90°,
∴OA⊥OP;
(3)如图,过O作OE⊥BC于E.
①如图1,当P点在B点右侧时,
则BQ=x+2,OE=,
∴y=וx,即y=(x+1)2﹣,
又∵0≤x≤2,
∴当x=2时,y有最大值为2;
②如图2,当P点在B点左侧时,
则BQ=2﹣x,OE=,
∴y=וx,即y=﹣(x﹣1)2+,
又∵0≤x≤2,∴当x=1时,y有最大值为;
综上所述,∴当x=2时,y有最大值为2;
2017年广东省中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)
1. 5的相反数是( )
A. B.5 C.- D.-5
2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )
A.0.4× B.0.4× C.4× D.4×
3.已知,则的补角为( )
A. B. C. D.
4.如果2是方程的一个根,则常数k的值为( )
A.1 B.2 C.-1 D.-2
5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )
A.95 B.90 C.85 D.80
6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )
A.等边三角形 B.平行四边形 C.正五边形 D.圆
7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A、B两点,已知点A的坐标为(1,2),则点B的坐标为( )
A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)
8.下列运算正确的是( )
A. B. C. D.
如题9图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为( )
A.130° B.100° C.65° D.50°
10.如题10图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①;②;③;④,其中正确的是( )
A.①③ B.②③ C.①④ D.②④
二、填空题(本大题6小题,每小题4分,共24分)
11.分解因式: .
12.一个n边形的内角和是,那么n= .
13.已知实数a,b在数轴上的对应点的位置如题13图所示,
则 0(填“>”,“
-1
17、计算:
解:原式=7-1+3 =9
先化简,再求值:
解:
当时,上式=
解:设男生x人,女生y人,则有
答:男生有12人,女生16人。
(1)作图略
∵ED是AB的垂直平分线
∴EA=EB
∴∠EAC=∠B=50°
∵∠AEC是△ABE的外角
∴∠AEC=∠EBA+∠B=100°
(1)如图,∵ABCD、ADEF是菱形
∴AB=AD=AF
又∵∠BAD=∠FAD
由等腰三角形的三线合一性质可得
AD⊥BF
∵BF=BC
∴BF=AB=AF
∵△ABF是等比三角形
∴∠BAF=60°
又∵∠BAD=∠FAD∴∠BAD=30°∴∠ADC=180°-30°=150°
(1)①、52(2)144
解(1)把A(1,0)B(3,0)代入得
∴
过P做PM⊥x轴与M
∵P为BC的中点,PM∥y轴
∴M为OB的中点∴P的横坐标为
把x=代入得
∴
∵PM∥OC∴∠OCB=∠MPB,∴
∴sin∠MPB=
∴sin∠OCB=
证明:连接AC,
∵AB为直径,
∴∠ACB=90°
∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3
又∵CP为切线
∴∠OCP=90°
∵DC为直径
∴∠DBC=90°
∴∠4+∠DCB=90°,∠DCB+∠D=90°
∴∠4=∠D
又∵弧BC=弧BC∴∠3=∠D
∴∠1=∠4即:CB是∠ECP的平分线
∵∠ACB=90°∴∠5+∠4=90°,∠ACE+∠1=90°
由(1)得∠1=∠4∴∠5=∠ACE
在Rt△AFC和Rt△AEC中
∴CF=CE
延长CE交DB于Q
25、(1)
(2)存在
理由:①如图1 若ED=EC
由题知:∠ECD=∠EDC=30°
∵DE⊥DB
∴∠BDC=60°
∵∠BCD=90°-∠ECD=60°
∴△BDC是等边三角形,CD=BD=BC=2
∴AC=
∴AD=AC-CD=4-2=2
②如图2 若CD=CE
依题意知:∠ACO=30°,∠CDE=∠CED=15°
∵DE⊥DB,∠DBE=90°∴∠ADB=180°-∠ADB-∠CDE=75°
∵∠BAC=∠OCA=30° ∴∠ABD=180°-∠ADB-∠BAC=75°
∴△ABD是等腰三角形,AD=AB=
③:若DC=DE则∠DEC=∠DCE=30°或∠DEC=∠DCE=150°
∴∠DEC>90°,不符合题意,舍去
综上所述:AD的值为2或者,△CDE为等腰三角形
(3)①如图(1),过点D作DG⊥OC于点G,DH⊥BC于点H。
∵∠GDE + ∠EDH = ∠HDB + ∠EDH = 90° ∴∠GDE = ∠HDB
在△ DGE和△ DHB 中,
∴ ∴
∵ ∴
②如图(2),作
2018年广东省中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)
1.四个实数0、、﹣3.14、2中,最小的数是( )
A.0 B. C.﹣3.14 D.2
2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )
A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108
3.如图,由5个相同正方体组合而成的几何体,它的主视图是( )
A.B. C. D.
4.数据1、5、7、4、8的中位数是( ) A.4B.5C.6D.7
5.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.圆B.菱形C.平行四边形D.等腰三角形
6.不等式3x﹣1≥x+3的解集是( )
A.x≤4B.x≥4C.x≤2D.x≥2
7.在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )
A.B.C.D.
8.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是( )
A.30° B.40° C.50° D.60°
9.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<B.m≤C.m>D.m≥
10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A.B.C.D.
二、填空题(共6小题,每小题3分,满分18分)
11.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是 .
12.分解因式:x2﹣2x+1= .
13.一个正数的平方根分别是x+1和x﹣5,则x= .
14.已知+|b﹣1|=0,则a+1= .
15.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 .(结果保留π)
16.如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为 .
三、解答题(一)
17.(6分)计算:|﹣2|﹣20180+()﹣1
18.(6分)先化简,再求值:•,其中a=.
19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,
(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不写作法,保留作图痕迹)
(2)在(1)条件下,连接BF,求∠DBF的度数.
20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?
21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.
(1)被调查员工人数为 人:
(2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△ADE≌△CED;
(2)求证:△DEF是等腰三角形.
23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.
(1)求m的值;
(2)求函数y=ax2+b(a≠0)的解析式;
(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.
24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若tan∠ABC=2,证明:DA与⊙O相切;
(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.
25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
(1)填空:∠OBC= °;
(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?
2018年广东省中考数学试卷答案
1.C.2.A.3. B.4. B.5. D.6. D.7. C.8. B.9.A.10. B.
11. 50°.12.(x﹣1)2.13. 2.14. 2.15.π.16.(2,0).
17.解:原式=2﹣1+2=3.
18.解:原式=•
=2a,
当a=时,
原式=2×=.
19.解:(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°,
∵EF垂直平分线线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
20.解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,
根据题意得:=,
解得:x=35,
经检验,x=35是原方程的解,
∴x﹣9=26.
答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.
(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,
根据题意得:26a+35(200﹣a)=6280,
解得:a=80.
答:购买了80条A型芯片.
21.解:(1)被调查员工人数为400÷50%=800人,
故答案为:800;
(2)“剩少量”的人数为800﹣(400+80+20)=300人,
补全条形图如下:
(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.
22.证明:(1)∵四边形ABCD是矩形,
∴AD=BC,AB=CD.
由折叠的性质可得:BC=CE,AB=AE,
∴AD=CE,AE=CD.
在△ADE和△CED中,,∴△ADE≌△CED(SSS).
(2)由(1)得△ADE≌△CED,
∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.
23.解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;
(2)将y=0代入y=x﹣3得:x=3,
所以点B的坐标为(3,0),
将(0,﹣3)、(3,0)代入y=ax2+b中,
可得:,解得:,
所以二次函数的解析式为:y=x2﹣3;
(3)存在,分以下两种情况:
①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,
∴OD=OC•tan30°=,
设DC为y=kx﹣3,代入(,0),可得:k=,
联立两个方程可得:,
解得:,
所以M1(3,6);
②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,
∴OE=OC•tan60°=3,
设EC为y=kx﹣3,代入(3,0)可得:k=,
联立两个方程可得:,
解得:,
所以M2(,﹣2),
综上所述M的坐标为(3,6)或(,﹣2).
24.解:(1)连接OC,
在△OAD和△OCD中,
∵,
∴△OAD≌△OCD(SSS),
∴∠ADO=∠CDO,
又AD=CD,
∴DE⊥AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACB=90°,即BC⊥AC,
∴OD∥BC;
(2)∵tan∠ABC==2,
∴设BC=a、则AC=2a,
∴AD=AB==,
∵OE∥BC,且AO=BO,
∴OE=BC=a,AE=CE=AC=a,
在△AED中,DE==2a,
在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,
∴AO2+AD2=OD2,
∴∠OAD=90°,
则DA与⊙O相切;
(3)连接AF,
∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,
∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,
又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,
∴=,即OD•DE=AD2②,
由①②可得DF•BD=OD•DE,即=,
又∵∠EDF=∠BDO,∴△EDF∽△BDO,
∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,
∴=,即=,解得:EF=.
25.解:(1)由旋转性质可知:OB=OC,∠BOC=60°,
∴△OBC是等边三角形,
∴∠OBC=60°.
故答案为60.
(2)如图1中,
∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,
∴S△AOC=•OA•AB=×2×2=2,
∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,
∴AC==2,
∴OP===.
(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.
则NE=ON•sin60°=x,
∴S△OMN=•OM•NE=×1.5x×x,
∴y=x2.
∴x=时,y有最大值,最大值=.
②当<x≤4时,M在BC上运动,N在OB上运动.
作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),
∴y=×ON×MH=﹣x2+2x.
当x=时,y取最大值,y<,
③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
MN=12﹣2.5x,OG=AB=2,
∴y=•MN•OG=12﹣x,
当x=4时,y有最大值,最大值=2,
综上所述,y有最大值,最大值为.
成绩等级
频数
A
24
B
10
C
x
D
2
合计
y
1
2
3
4
5
6
7
8
9
10
D
C
A
B
B
D
A
B
C
C
相关试卷
这是一份2023年广东省中考数学试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020年广东省中考数学试卷,共20页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份2022年广东省中考数学试卷,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。