2019年湖北省宜昌市中考数学试卷与答案
展开1.﹣66的相反数是( )
A.﹣66B.66C.D.
2.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
3.如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是( )
A.点AB.点BC.点CD.点D
4.如图所示的几何体的主视图是( )
A. B. C. D.
5.在纳木错开展的第二次青藏高原综合科学考查研究中,我国自主研发的系留浮空器于5月23日凌晨达到海拔7003米的高度.这一高度也是已知的同类型同量级浮空器驻空高度的世界纪录.数据7003用科学记数法表示为( )
A.0.7×104B.70.03×102 C.7.003×103D.7.003×104
6.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于( )
A.45°B.60°C.75°D.85°
7.下列计算正确的是( )
A.3ab﹣2ab=1B.(3a2)2=9a4C.a6÷a2=a3D.3a2•2a=6a2
8.李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是( )
A.120B.110C.100D.90
9.化简(x﹣3)2﹣x(x﹣6)的结果为( )
A.6x﹣9B.﹣12x+9C.9D.3x+9
10.通过如下尺规作图,能确定点D是BC边中点的是( )
A.B.
C.D.
11.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为( )
A.B.C.D.
12.如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是( )
A.50°B.55°C.60°D.65°
13.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是( )
A.B.C.D.
14.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为( )
A.6B.6C.18D.
15.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )
A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)
二.解答题(本大题共有9个小题,共75分)
16.(6分)已知:x≠y,y=﹣x+8,求代数式+的值.
17.(6分)解不等式组,并求此不等式组的整数解.
18.(7分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.
(1)求证:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度数.
19.(7分)《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).
(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费 元.若李先生也在该停车场停车,支付停车费11元,则停车场按 小时(填整数)计时收费.
(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.
20.(8分)某校在参加了宜昌市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:
小明:“选科学素养和人文素养的同学分别为16人,12人.”
小颖:“选数学素养的同学比选阅读素养的同学少4人.”
小雯:“选科学素养的同学占样本总数的20%.”
(1)这次抽样调查了多少名学生?
(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?
(3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比;
(4)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?
21.(8分)如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.
(1)求证:AD是⊙O的切线;
(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;
(3)若NH=AH,BN=,连接MN,求OH和MN的长.
22.(10分)HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.
(1)求2018年甲类芯片的产量;
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.
23.(11分)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.
(1)填空:点A (填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;
(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;
(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;
(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.
24.(12分)在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).
(1)填空:正方形的面积为 ;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是: ;
(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.
①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;
②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;
③求证:抛物线L与直线x=1的交点M始终位于x轴下方.
2019年湖北省宜昌市中考数学试卷答案
1. B.2. D.3. D.4. D.5. C.6. C.7. B.8. C.9. C.10. A.11. D.12. A.13. B.14. A.15. B.
16.解:原式=+==,
当x≠y,y=﹣x+8时,
原式=x+(﹣x+8)=8.
17.解:,
由①得:x,
由②得:x<4,
不等式组的解集为:<x<4.
则该不等式组的整数解为:1、2、3.
18.(1)证明:∵BE平分∠ABC,
∴∠ABE=∠DBE,
在△ABE和△DBE中,,
∴△ABE≌△DBE(SAS);
(2)解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE=∠ABC=15°,
在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.
19.解:(1)若市民张先生某次在该停车场停车2小时10分钟,应交停车费为:3+2×2=7(元);
若李先生也在该停车场停车,支付停车费11元,则超出时间为(11﹣3)÷2=4(小时),所以停车场按5小时计时收费.
故答案为:7;5;
(2)当x取整数且x≥1时,该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式为:y=3+(2(x﹣1),
即y=2x+1.
20.解:(1)16÷20%=80,
所以这次抽样调查了80名学生;
(2)设样本中选数学素养的同学数为x人,则选阅读素养的同学数为(x+4)人,
x+x+4+16+12=80,解得x=24,
则x+4=28,
所以本总数中,选“阅读素养”的学生数为28人,选“数学素养”的学生数为24人;
(3)选数学素养的学生数所占的百分比为×100%=30%;
选阅读素养的学生数所占的百分比为×100%=35%;
选人文素养的学生数所占的百分比为×100%=15%;
如图,
(4)400×35%=140,
所以估计全年级选择“阅读素养”的学生有140人.
21.解:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠AHC=90°,
∴∠HAD=90°,即OA⊥AD,
又∵OA为半径,
∴AD是⊙O的切线;
(2)解:如右图,连接OC,
∵OH=OA,AH=3,
∴OH=1,OA=2,
∵在Rt△OHC中,∠OHC=90°,OH=OC,
∴∠OCH=30°,
∴∠AOC=∠OHC+∠OCH=120°,
∴S扇形OAC==,
∵CH==,
∴S△OHC=×1×=,
∴四边形ABCD与⊙O重叠部分的面积=S扇形OAC+S△OHC=+;
(3)设⊙O半径OA=r=OC,OH=3﹣r,
在Rt△OHC中,OH2+HC2=OC2,
∴(3﹣r)2+12=r2,
∴r=,则OH=,
在Rt△ABH中,AH=3,BH=+1=,则AB=,
在Rt△ACH中,AH=3,CH=NH=1,得AC=,
在△BMN和△BCA中,
∠B=∠B,∠BMN=∠BCA,
∴△BMN∽△BCA,
∴=即==,
∴MN=,
∴OH=,MN=.
22.解:(1)设2018年甲类芯片的产量为x万块,
由题意得:x+2x+(x+2x)+400=2800,
解得:x=400;
答:2018年甲类芯片的产量为400万块;
(2)2018年万块丙类芯片的产量为3x+400=1600万块,
设丙类芯片的产量每年增加的数量为y万块,
则1600+1600+y+1600+2y=14400,
解得:y=3200,
∴丙类芯片2020年的产量为1600+2×3200=8000万块,
2018年HW公司手机产量为2800÷10%=28000万部,
400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),
设m%=t,
化简得:3t2+2t﹣56=0,
解得:t=4,或t=﹣(舍去),
∴t=4,
∴m%=4,
∴m=400;
答:丙类芯片2020年的产量为8000万块,m=400.
23.解:(1)连接AO,
∵∠EAF=90°,O为EF中点,
∴AO=EF,
∴点A在⊙O上,
当=时,∠AEF=45°,
∴tan∠AEF=tan45°=1,
故答案为:在,1;
(2)∵EF⊥FH,
∴∠EFH=90°,
在矩形ABCD中,∠A=∠D=90°,
∴∠AEF+∠AFE=90°,
∠AFE+∠DFH=90°,
∴∠AEF=∠DFH,
又FE=FH,
∴△AEF≌△DFH(AAS),
∴AF=DH,AE=DF,
∴AD=AF+DF=AE+DH;
(3)延长EF交HD的延长线于点G,
∵F分别是边AD上的中点,
∴AF=DF,
∵∠A=∠FDG=90°,∠AFE=∠DFG,
∴△AEF≌△DGF(ASA),
∴AE=DG,EF=FG,
∵EF⊥FG,
∴EH=GH,
∴GH=DH+DG=DH+AE,
∴EH=AE+DH;
(4)过点M作MQ⊥AD于点Q.
设AF=x,AE=a,
∵FM=FEEF⊥FH,
∴△EFM为等腰直角三角形,
∴∠FEM=∠FMN=45°,
∵FM=FE,
∠A=∠MQF=90°,
∠AEF=∠MFQ,
∴△AEF≌△QFM(ASA),
∴AE=EQ=a,AF=QM,
∵AE=AD,
∴AF=DQ=QM=x,
∵DC∥QM,
∴,
∵DC∥AB∥QM,
∴,
∴,
∵FE=FM,
∴,
∠FEM=∠FMN=45°,
∴△FEN~△HMN,
∴,
∴.
24.解:(1)由点A(﹣2,4),B(﹣2,﹣2)可知正方形的边长为6,
∴正方形面积为36;
有四个交点时0<k<4或﹣8<k<0;
故答案为36,0<k<4或﹣8<k<0;
(2)①由题意可知,﹣2≤m≤4,yQ=﹣m2﹣2m+3=﹣(m+1)2+4,
当m=﹣1,yQ最大=4,在运动过程中点Q在最高位置时的坐标为(﹣1,4),
当m<﹣1时,yQ随m的增大而增大,当m=﹣2时,yQ最小=3,
当m>﹣1时,yQ随m的增大而减小,当m=4时,yQ最小=﹣21,
∴3>﹣21,
∴yQ最小=﹣21,点Q在最低位置时的坐标(4,﹣21),
∴在运动过程中点Q在最高位置时的坐标为(﹣1,4),最低位置时的坐标为(4,﹣21);
②当双曲线y=经过点B(﹣2,﹣2)时,k=4,
∴N(4,1),
∵顶点P(m,n)在边BC上,
∴n=﹣2,
∴BP=m+2,CP=4﹣m,
∵抛物线y=a(x﹣m)2﹣2(a>0)与边AB、DC分别交于点E、F,
∴E(﹣2,a(﹣2﹣m)2﹣2),F(4,a(4﹣m)2﹣2),
∴BE=a(﹣2﹣m)2,CF=a(4﹣m)2,
∴=﹣,
∴a(m+2)﹣a(4﹣m)=2am﹣2a=2a(m﹣1),
∵AE=NF,点F在点N下方,
∴6﹣a(﹣2﹣m)2=3﹣a(4﹣m)2,
∴12a(m﹣1)=3,
∴a(m﹣1)=,
∴=;
③由题意得,M(1,a(1﹣m)2﹣2),
∴yM=a(1﹣m)2﹣2(﹣2≤m≤4),
即yM=a(m﹣1)2﹣2(﹣2≤m≤4),
∵a>0,
∴对应每一个a(a>0)值,当m=1时,yM最小=﹣2,
当m=﹣2或4时,yM最大=9a﹣2,
当m=4时,y=a(x﹣4)2﹣2,
∴F(4,﹣2),E(﹣2,36a﹣2),
∵点E在边AB上,且此时不与B重合,
∴﹣2<36a﹣2≤4,
∴0<a≤,
∴﹣2<9a﹣2≤﹣,
∴yM≤﹣,
同理m=﹣2时,y=y=a(x+2)2﹣2,
∴E(﹣2,﹣2),F(4,36a﹣2),
∵点F在边CD上,且此时不与C重合,
∴﹣2<36a﹣2≤4,
解得0<a≤,
∴﹣2<9a﹣2≤﹣,
∴yM≤﹣,
综上所述,抛物线L与直线x=1的交点M始终位于x轴下方;
2019年湖北省宜昌市中考数学试卷及答案: 这是一份2019年湖北省宜昌市中考数学试卷及答案,共9页。试卷主要包含了﹣66的相反数是,如图所示的几何体的主视图是,下列计算正确的是,化简等内容,欢迎下载使用。
2023年湖北省宜昌市中考数学试卷(含答案解析): 这是一份2023年湖北省宜昌市中考数学试卷(含答案解析),共23页。试卷主要包含了 下列运算正确的个数是, 下列运算正确的是等内容,欢迎下载使用。
2023年湖北省宜昌市中考数学试卷(含答案解析): 这是一份2023年湖北省宜昌市中考数学试卷(含答案解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。