初中苏科版2.1 圆课堂检测
展开重难点01讲 圆幂定理(2种题型)
1.识别几何模型。
2.利用“圆幂定理”模型解决问题
一、相交弦定理
二、切割线定理
题型一:相交弦定理
一.选择题(共5小题)
1.如图:若弦BC经过圆O的半径OA的中点P,且PB=3,PC=4,则圆O的直径为( )
A.7 B.8 C.9 D.10
2.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是( )
A.2cm B.3cm C.4cm D.4cm
3.如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是( )
A.x2﹣8x﹣15=0 B.x2﹣8x+15=0 C.x2+8x﹣15=0 D.x2+8x+15=0
4.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为( )
A.4cm B.3cm C.5cm D.cm
5.如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为( )
A. B.2 C. D.3
二.填空题(共8小题)
6.已知如图,等腰△ABC内接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,则⊙O的半径为 .
7.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是 mm.
8.如图,四边形ABCD是⊙O的内接矩形,AB=2,BC=4,E是BC的中点,AE的延长线交⊙O于点F,则EF的长是 .
9.如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM= .
10.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于E),设AE=x,BE=y,他用含x,y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式 .
11.如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是 .
12.已知:如图,PT切⊙O于点T,PA交⊙O于A,B两点且与直径CT交于点D,CD=2,AD=3,BD=6,则PB= .
13.如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,如果⊙O的半径为,则O点到BE的距离OM= .
三.解答题(共2小题)
14.如图,⊙O中,直径CD⊥弦AB于E点,若CD=10,DE=2,求AB的长.
15.如图,⊙O的直径AB=10,弦DE⊥AB于点H,AH=2.
(1)求DE的长;
(2)延长ED到P,过P作⊙O的切线,切点为C,若PC=2,求PD的长.
题型二、切割线定理
一.选择题(共5小题)
1.已知:如图⊙O的割线PAB交⊙O于点A,B,PA=7cm,AB=5cm,PO=10cm,则⊙O的半径是( )
A.4cm B.5cm C.6cm D.7cm
2.如图:PAB、PCD为⊙O的两条割线,若PA•PB=30,PC=3,则CD的长为( )
A.10 B.7 C. D.3
3.如图,已知PA是⊙O的切线,A为切点,PC与⊙O相交于B、C两点,PB=2cm,BC=8cm,则PA的长等于( )
A.4cm B.16cm C.20cm D.2cm
4.如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是( )
A. B. C. D.
5.如图,PA是⊙O的切线,A为切点,PBC是过点O的割线.若PA=8cm,PB=4cm,则⊙O的直径为( )
A.6cm B.8cm C.12cm D.16cm
二.填空题(共3小题)
6.如图,PA切⊙O于点A,PBC是⊙O的割线,若PB=BC=2,则PA= .
7.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3,4,以AC为直径作圆与斜边AB交于点D,则AD= .
8.如图,已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP= .
三.解答题(共4小题)
9.如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的倍.
(1)求⊙O的半径R;
(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.
10.如图,⊙O的直径AB=10,弦DE⊥AB于点H,AH=2.
(1)求DE的长;
(2)延长ED到P,过P作⊙O的切线,切点为C,若PC=2,求PD的长.
11.如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T.
(1)求证:AK=MT;
(2)求证:AD⊥BC;
(3)当AK=BD时,求证:.
12.如图,AB是⊙O的直径,CB、CE分别切⊙O于点B、D,CE与BA的延长线交于点E,连接OC、OD.
(1)△OBC与△ODC是否全等? (填“是”或“否”);
(2)已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数,设计出计算⊙O半径r的一种方案:
①你选用的已知数是 ;
②写出求解过程.(结果用字母表示)
一.选择题(共2小题)
1.(2022秋•武汉期中)如图,已知AB是⊙O的一条弦,直径CD与弦AB交于点E,且BE=3AE,已知DE=8,CE=2,则点O到AB的距离为( )
A. B. C.2 D.
2.(2021•涟源市三模)如图,⊙O上经过点A的切线交直径CB的延长线于点P,且∠C=30°,⊙O的半径为2,则下列结论错误的是( )
A.的长为 B.△ABP为等腰三角形
C.B为OP中点 D.∠P=30°
二.解答题(共2小题)
3.(2020•青秀区校级三模)如图,以△ABC的一边BC为直径的⊙O,交AB于点D,连接CD,OD,已知∠A+∠1=90°.
(1)求证:AC是⊙O的切线;
(2)若∠B=30°,AD=2,求⊙O的半径.
4.(2023•郸城县一模)请阅读以下材料,完成相应任务.
我们知道,过任意一个三角形的三个顶点能作一个圆,那么过任意一个四边形的四个顶点能作一个圆吗?李雷经过实践探究发现了如下结论:
如果线段同侧两点(与线段在同一平面内)分别与线段两端点的连线所组成的夹角相等,那么这两点和线段两端点四点共圆.下面是李雷证明上述命题的过程(不完整).
已知:如图1,点C,D是线段AB同侧两点,且∠ACB=∠ADB.
求证:点A,B,C,D四点共圆.
证明:作△ABC的外接圆⊙O,假设点D在⊙O外或在⊙O内.
如图2,若点D在⊙O外.设AD与⊙O交于点E,连接BE,
则∠ACB=∠AEB(依据一),
又∵∠AEB=∠ADB+∠DBE(依据二),
∴∠ACB=∠ADB+∠DBE.
∴∠ACB>∠ADB.这与已知条件“∠ACB=∠ADB”矛盾,故点D在⊙O外不成立;
如图3,若点D在⊙O内,……
(请同学们补充完整省略的部分证明过程)
综上所述,作△ABC的外接圆⊙O,点D在⊙O上,即点A,B,C,D四点共圆.
(1)填空:将材料中依据一、依据二补充完整;
依据一: 同弧所对的圆周角相等 ;
依据二: 三角形的外角等于与它不相邻的两个内角的和 .
(2)请按照上面的证明思路,写出该证明的剩余部分;
(3)填空:如图4,在四边形ABCD中,∠ABD=∠ACD,对角线AC,BD交于点E,E为AC中点,若BD=6,BE=4,则AC= 4 .
苏科版九年级上册2.1 圆练习题: 这是一份苏科版九年级上册2.1 圆练习题,文件包含重难点07两垂一圆构造直角三角形模型学生版docx、重难点07两垂一圆构造直角三角形模型老师版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
初中数学苏科版九年级上册2.1 圆精练: 这是一份初中数学苏科版九年级上册2.1 圆精练,文件包含重难点06两圆一中垂构造等腰三角形模型学生版docx、重难点06两圆一中垂构造等腰三角形模型老师版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
苏科版九年级上册2.1 圆复习练习题: 这是一份苏科版九年级上册2.1 圆复习练习题,文件包含重难点02“四点共圆”模型学生版docx、重难点02“四点共圆”模型老师版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。