2016年至2018年临沂市三年中考数学试卷
展开2016年山东省临沂市中考数学试卷
一、(共14小题,每小题3分,满分42分)
1.四个数﹣3,0,1,2,其中负数是( )
A.﹣3 B.0 C.1 D.2
2.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )
A.80° B.85° C.90° D.95°
3.下列计算正确的是( )
A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5
4.不等式组的解集,在数轴上表示正确的是( )
A. B.
C. D.
5.如图,一个空心圆柱体,其主视图正确的是( )
A. B. C. D.
6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )
A. B. C. D.
7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )
A.108° B.90° C.72° D.60°
8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是( )
A. B. C. D.
9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( )
A.4 B.3 C.2 D.1
10.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是( )
A. B. C.﹣ D.﹣
11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )
A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2
12.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )
A.0 B.1 C.2 D.3
13.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
…
y
…
4
0
﹣2
﹣2
0
4
…
下列说法正确的是( )
A.抛物线的开口向下 B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣
14.如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有( )
A.0个 B.1个 C.2个 D.0个,或1个,或2个
二、填空题(共5小题,每小题3分,满分15分)
15.分解因式:x3﹣2x2+x= .
16.化简= .
17.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为 .
18.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为 .
19.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是 .
三、解答题(共7小题,满分63分)
20.计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.
21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
身高分组
频数
百分比
x<155
5
10%
155≤x<160
a
20%
160≤x<165
15
30%
165≤x<170
14
b
x≥170
6
12%
总计
100%
(1)填空:a= ,b= ;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
22.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?
23.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2,求PD的长.
24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的数量关系是 ,位置关系是 ;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
26.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
2016年临沂市中考数学试卷参考答案
一、1. A.2. B.3. C.4. A.5. B.6. B.7. C.8. D.9. B.10. C.11. C.12. D.13. D.14. B.
二、15. x(x﹣1)2.16. 1.17. .18. 6.19..
三、20.解:原式=3+×﹣2﹣1=2﹣.
21.解:(1)由表格可得,
调查的总人数为:5÷10%=50,
∴a=50×20%=10,
b=14÷50×100%=28%,
故答案为:10,28%;
(2)补全的频数分布直方图如下图所示,
(3)600×(28%+12%)=600×40%=240(人)
即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.
22.解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,
在Rt△APC中,∵cos∠APC=,
∴PC=20•cos60°=10,
∴AC==10,
在△PBC中,∵∠BPC=45°,
∴△PBC为等腰直角三角形,
∴BC=PC=10,
∴AB=AC﹣BC=10﹣10≈7.3(海里).
答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.
23.(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC是等边三角形.
(2)解:∵△ABC是等边三角形,AB=2,
∴AC=BC=AB=2,∠ACB=60°.
在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,
∴AP=AC•cot∠APC=2.
在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,
∴AD=AC•tan∠ACD=6.
∴PD=AD﹣AP=6﹣2=4.
24.解:(1)由题意知:
当0<x≤1时,y甲=22x;
当1<x时,y甲=22+15(x﹣1)=15x+7.
y乙=16x+3.
(2)①当0<x≤1时,
令y甲<y乙,即22x<16x+3,
解得:0<x<;
令y甲=y乙,即22x=16x+3,
解得:x=;
令y甲>y乙,即22x>16x+3,
解得:<x≤1.
②x>1时,
令y甲<y乙,即15x+7<16x+3,
解得:x>4;
令y甲=y乙,即15x+7=16x+3,
解得:x=4;
令y甲>y乙,即15x+7>16x+3,
解得:0<x<4.
综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.
25.解:(1)FG=CE,FG∥CE;
(2)过点G作GH⊥CB的延长线于点H,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC
∴HE+EB=BC+EB
∴BH=EC
∴FG=EC
(3)∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,
,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,
∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.
26.解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,
∴A(5,0),B(0,10),
∵抛物线过原点,
∴设抛物线解析式为y=ax2+bx,
∵抛物线过点B(0,10),C(8,4),
∴,
∴,
∴抛物线解析式为y=x2﹣x,
∵A(5,0),B(0,10),C(8,4),
∴AB2=52+102=125,BC2=82+(8﹣5)2=100,AC2=42+(8﹣5)2=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
(2)如图1,
当P,Q运动t秒,即OP=2t,CQ=10﹣t时,
由(1)得,AC=OA,∠ACQ=∠AOP=90°,
在Rt△AOP和Rt△ACQ中,
,
∴Rt△AOP≌Rt△ACQ,
∴OP=CQ,
∴2t=10﹣t,
∴t=,
∴当运动时间为时,PA=QA;
(3)存在,
∵y=x2﹣x,
∴抛物线的对称轴为x=,
∵A(5,0),B(0,10),
∴AB=5
设点M(,m),
①若BM=BA时,
∴()2+(m﹣10)2=125,
∴m1=,m2=,
∴M1(,),M2(,),
②若AM=AB时,
∴()2+m2=125,
∴m3=,m4=﹣,
∴M3(,),M4(,﹣),
③若MA=MB时,
∴(﹣5)2+m2=()2+(10﹣m)2,
∴m=5,
∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,
∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),
2017年山东省临沂市中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)
1.﹣的相反数是( )
A. B.﹣ C.2017 D.﹣2017
2.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )
A.50° B.60° C.70° D.80°
3.下列计算正确的是( )
A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4
4.不等式组中,不等式①和②的解集在数轴上表示正确的是( )
AB.C. D.
5.如图所示的几何体是由五个小正方体组成的,它的左视图是( )
A. B. C. D.
6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( )
A. B. C. D.
7.一个多边形的内角和是外角和的2倍,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.八边形
8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是( )
A.= B.= C.= D.=
9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:
部门
人数
每人创年利润(万元)
A
1
10
B
3
8
C
7
5
D
4
3
这15名员工每人所创年利润的众数、中位数分别是( )
A.10,5 B.7,8 C.5,6.5 D.5,5
10.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是( )
A.2 B.﹣π C.1 D.+π
第2题图 第10题图 第12题图 第14题图
11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是( )
A.11 B.12 C.13 D.14
12.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )
A.若AD⊥BC,则四边形AEDF是矩形 B.若AD垂直平分BC,则四边形AEDF是矩形
C.若BD=CD,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是菱形
13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )
A.6 B.10 C.2 D.2
二、填空题(本大题共5小题,每小题3分,共15分)
15.分解因式:m3﹣9m= .
16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .
17.计算:÷(x﹣)= .
18.在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是 .
19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).
已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:
③ =(2,1),=(﹣1,2); ②=(cos30°,tan45°),=(1,sin60°);
③=(﹣,﹣2),=(+,); ④=(π0,2),=(2,﹣1).
其中互相垂直的是 (填上所有正确答案的符号).
三、解答题(本大题共7小题,共63分)
20.(7分)计算:|1﹣|+2cos45°﹣+()﹣1.
21.(7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:
学生最喜爱的节目人数统计表
节目
人数(名)
百分比
最强大脑
5
10%
朗读者
15
b%
中国诗词大会
a
40%
出彩中国人
10
20%
根据以上提供的信息,解答下列问题:
(1)x= ,a= ,b= ;
(2)补全上面的条形统计图;
(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
22.(7分)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.
23.(9分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
24.(9分)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
25.(11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=
∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.
在此基础上,同学们作了进一步的研究:
(1) 小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=
∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2) 小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=
∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
26.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
2017年临沂市中考数学答案
一、.1. A.2. A.3. D.4. B.5. D.6. C.7. C.8. B.9. D.10. C.11. B.12. D.13. B.14. C.
二、]15. m(m+3)(m﹣3).16. 4.17. .18. 24.19.①③④.
三、20.解:|1﹣|+2cos45°﹣+()﹣1
=﹣1+2×﹣2+2
=﹣1+﹣2+2
=1.
21.解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;
故答案为:50;20;30;[来&源:中国^%教@育出版~网]
(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:
(3)根据题意得:1000×40%=400(名),
则估计该校最喜爱《中国诗词大会》节目的学生有400名.
22.解:延长CD,交AE于点E,可得DE⊥AE,
在Rt△AED中,AE=BC=30m,∠EAD=30°,
∴ED=AEtan30°=10m,
在Rt△ABC中,∠BAC=30°,BC=30m,
∴AB=30m,
则CD=EC﹣ED=AB﹣ED=30﹣10=20m.
23. (1)证明:∵BE平分∠BAC,AD平分∠ABC,
∴∠ABE=∠CBE,∠BAE=∠CAD,
∴,
∴∠DBC=∠CAD,
∴∠DBC=∠BAE,
∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,
∴∠DBE=∠DEB,
∴DE=DB;
(2)解:连接CD,如图所示:
由(1)得:,
∴CD=BD=4,
∵∠BAC=90°,
∴BC是直径,
∴∠BDC=90°,
∴BC==4,
∴△ABC外接圆的半径=×4=2.
24.解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,
15k=27,得k=1.8,
即当0≤x≤15时,y与x的函数关系式为y=1.8x,
当x>15时,设y与x的函数关系式为y=ax+b,
,得,
即当x>15时,y与x的函数关系式为y=2.4x﹣9,
由上可得,y与x的函数关系式为y=;
(2)设二月份的用水量是xm3,
当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,
解得,x无解,
当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,
解得,x=12,
∴40﹣x=28,
答:该用户二、三月份的用水量各是12m3、28m3.
25.解:(1)BC+CD=AC;
理由:如图1,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=45°,
∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,
∵∠ACB=∠ACD=45°,
∴∠ACB+∠ACD=45°,
∴∠BAD+∠BCD=180°,
∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,
∴∠ABC=∠ADE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS),
∴∠ACB=∠AED=45°,AC=AE,
∴△ACE是等腰直角三角形,∴CE=AC,
∵CE=CE+DE=CD+BC,∴BC+CD=AC;
(2)BC+CD=2AC•cosα.理由:如图2,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=α,
∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,
∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,
过点A作AF⊥CE于F,
∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,
∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.
26.解:(1)由y=ax2+bx﹣3得C(0.﹣3),
∴OC=3,
∵OC=3OB,
∴OB=1,
∴B(﹣1,0),
把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)设连接AC,作BF⊥AC交AC的延长线于F,
∵A(2,﹣3),C(0,﹣3),
∴AF∥x轴,
∴F(﹣1,﹣3),
∴BF=3,AF=3,
∴∠BAC=45°,
设D(0,m),则OD=|m|,
∵∠BDO=∠BAC,
∴∠BDO=45°,
∴OD=OB=1,
∴|m|=1,
∴m=±1,
∴D1(0,1),D2(0,﹣1);
(3)设M(a,a2﹣2a﹣3),N(1,n),
①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,
则△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a﹣1|=3,
∴a=3或a=﹣2,
∴M(4,5)或(﹣2,11);
②以AB为对角线,BN=AM,BN∥AM,如图3,
则N在x轴上,M与C重合,
∴M(0,﹣3),
综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).
山东省临沂市2018年中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)
1.在实数﹣3,﹣1,0,1中,最小的数是( )[ww^w.#&zzstep*.@com]
A.﹣3 B.﹣1 C.0 D.1
2.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
3.如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是( )
A.42° B.64° C.74° D.106°
[来 *源: %@中~教^网]
4.一元二次方程y2﹣y﹣=0配方后可化为( )
A.(y+)2=1 B.(y﹣)2=1 C.(y+)2= D.(y﹣)2=
5.不等式组的正整数解的个数是( )
A.5 B.4 C.3 D.2
6.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是( )
A.9.3m B.10.5m C.12.4m D.14m
7.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是( )[中~国&^教育出#*版网]
A.12cm2 B.(12+π)cm2 C.6πcm2 D.8πcm2
8.2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
9.如表是某公司员工月收入的资料.
月收入/元
45000
18000
10000
5500
5000
3400
3300
1000
人数
1
1
1
3
6
1
11
1
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数 B.平均数和中位数 C.中位数和众数 D.平均数和方差
10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )
A. = B. =
C. = D. =
11.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A. B.2 C.2 D.
12.如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是( )[来%#源*:中^&教网]
A.x<﹣1或x>1 B.﹣1<x<0或x>1 C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l[来13.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:
①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;
③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.[来源:zzst%ep^.c@om~*]其中正确的个数是( )
A.1 B.2 C.3 D.4[www.zz&^s#tep.c*o~m]
14.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )
A.原数与对应新数的差不可能等于零 B.原数与对应新数的差,随着原数的增大而增大
C.当原数与对应新数的差等于21时,原数等于30[w#D.当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共1 5分)
15.计算:|1﹣|= .
16.已知m+n=mn,则(m﹣1)(n﹣1)= .
17.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD= .
18.如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是 cm.[来源%*:中教^网]
19.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0. =x,由0. =0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0. =.将0.写成分数的形式是 .
三、解答题(本大题共7小题,共6 3分)
20.计算:(﹣).
21.某地某月1~20日中午12时的气温(单位:℃)如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19[来源:中%@国#教育出~版网&]
(1)将下列频数分布表补充完整:
气温分组
划记
频数
12≤x<17
3
17≤x<22
10
22≤x<27
5
27≤x<32
2
(2)补全频数分布直方图;
(3)根据频数分布表或频数分布直方图,分析数据的分布情况.
22.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?
23.如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
24.甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.
根据图中信息,求:
(1)点Q的坐标,并说明它的实际意义;
(2)甲、乙两人的速度.
25.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
26.(12018年山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
山东省临沂市2018年中考数学试卷答案
一、1. A.[来源^&:*@中教网%]2. B.3. C.[中国^&教育*出%#版网]4. B.5. C.6. B.[来源*:%zzstep.&com^@]7. C.8. D.[ww@w#.zzstep~.^com*]9. C.10. A.11. B.12. D.13. A.[来源:中~^&国@教育出版网#]14. D.
二、15. ﹣1.16. 1.17. 4.[中国*^教育#出&@版网]18. .19. .
三、20.解:原式=[﹣]•[来@源^:#&中教网%]
=•[www%.zzs@t^e#p*.com]
=•
=.
21.解:(1)补充表格如下:
气温分组
划记
频数
12≤x<17
3
17≤x<22
10
22≤x<27
5
27≤x<32
2
(2)补全频数分布直方图如下:[www.z~^&z#step.co@m]
(3)由频数分布直方图知,17≤x<22时天数最多,有9天.[来&源@:~中教^#网]
22.
解:
工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,
理由是:过B作BD⊥AC于D,
∵AB>BD,BC>BD,AC>AB,
∴求出DB长和2.1m比较即可,
设BD=xm,
∵∠A=30°,∠C=45°,
∴DC=BD=xm,AD=BD=xm,[来&%源~^:中@教网]
∵AC=2(+1)m,
∴x+x=2(+1),
∴x=2,[来#%源:中国教育^&出版网@]
即BD=2m<2.1m,
∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.
【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.
[来&源%:中*^~教网]
23.(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,[来源:zzs#*t~e%^p.com]
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,[来源:%&z~z^s@tep.com]
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣[来源#@:中%教&^网]
=﹣.[中@~国^*教&育出版网]
24.解:(1)设PQ解析式为y=kx+b
把已知点P(0,10),(,)代入得
解得:
∴y=﹣10x+10
当y=0时,x=1
∴点Q的坐标为(1,0)
点Q的意义是:
甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.
(2)设甲的速度为akm/h,乙的速度为bkm/h
由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时[来源#&:中教@^%网]
∴
∴
∴甲、乙的速度分别为6km/h、4km/h
25.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,
∴∠AEB=∠ABE,[中国教^@育出~&版网%]
又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,
∴∠EDG=∠DEG,[来#源:zzs*tep.~com@^]
∴DG=EG,[来&%^源:中教网@~]
∴FG=AG,
又∵∠DGF=∠EGA,
∴△AEG≌Rt△FDG(SAS),
∴DF=AE,
又∵AE=AB=CD,
∴CD=DF;[来&源:中*^教@#网]
(2)如图,当GB=GC时,点G在BC的垂直平分线上,
分两种情况讨论:
①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,
∵GC=GB,[中#国%^@教育出版网~]
∴GH⊥BC,[来*源%:z#zstep.&co^m]
∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,[来源:zzs^@tep#*.c~om]
∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;
②当点G在AD左侧时,同理可得△ADG是等边三角形,[中国教%#&育出版@网^]
∴∠DAG=60°,
∴旋转角α=360°﹣60°=300°.
26.解:(1)∵B(1,0),∴OB=1,
∵OC=2OB=2,∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴,[来%源#:@中教&^网]∴,∴AC=6,[来源%:中@国^教育~出版网#]∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,[来源~:中*^教网&%]
解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),[中*国教^&%育#出版网]
易得AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
x=1(舍)或﹣1,∴P(﹣1,6);
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,[来源:中国*^教&育@#出版网]AB2=(1+2)2+62=45,[来@源^:#&中教网%]
分三种情况:
i)当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3,
∴M(﹣1,3+)或(﹣1,3﹣);[来源:%@中#&教*网]
ii)当∠ABM=90°时,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2,
y=﹣1,
∴M(﹣1,﹣1),
iii)当∠BAM=90°时,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2,
y=,[w~ww.zz&^st#ep.co*m]∴M(﹣1,);
综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
2016年至2018年郑州市三年中考数学试卷及答案: 这是一份2016年至2018年郑州市三年中考数学试卷及答案,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2014年至2018年临沂市五年中考数学试卷: 这是一份2014年至2018年临沂市五年中考数学试卷,共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2011年至2018年临沂市八年中考数学试卷: 这是一份2011年至2018年临沂市八年中考数学试卷,共54页。试卷主要包含了选择题,填空题把答案填在题中横线上.,开动脑筋,你一定能做对!,认臭思考.你一定能成功!,相信自己,加油呀!等内容,欢迎下载使用。