2014年至2018年武汉市五年中考数学试卷和答案(微信支付)
展开
这是一份2014年至2018年武汉市五年中考数学试卷和答案(微信支付),共36页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2014年武汉市中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.在实数-2、0、2、3中,最小的实数是( )
A.-2 B.0 C.2 D.3
2.若代数式在实数范围内有意义,则x的取值范围是( )
A.x≥-3 B.x>3 C.x≥3 D.x≤3
3.光速约为300 000千米/秒,将数字300 000用科学记数法表示为( )
A.3×104 B.3×105 C.3×106 D.30×104
4.在一次中学生田径运动会上,参加调高的15名运动员的成绩如下表所示:
成绩(m)
1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
3
2
那么这些运动员跳高成绩的众数是( )
A.4 B.1.75 C.1.70 D.1.65
5.下列代数运算正确的是( )
A.(x3)2=x5 B.(2x)2=2x2 C.x3·x2=x5 D.(x+1)2=x2+1
6.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1)
7.如图,由4个大小相同的正方体组合而成的几何体,其俯视图是( )
A.
B.
C.
D.
8.为了解某一路口某一时刻的汽车流量,小明同学10天中在同一时段统计该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:
由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )
A.9 B.10 C.12 D.15
9.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )
A.31 B.46 C.51 D.66
10.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E交PA、PB于C、D,若⊙O的半径为r,PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
二、填空题(共6小题,每小题3分,满分18分)
11.计算:-2+(-3)=_______
12.分解因式:a3-a=_______________
13.如图,一个转盘被分成7个相同的扇形,颜色分别为红黄绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______
14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为___米
15.如图,若双曲线与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为______
16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______
三、解答题(共9小题,共72分)
17.解方程:
18.已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集
19.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD
20.如图,在直角坐标系中,A(0,4)、C(3,0)
(1) ① 画出线段AC关于y轴对称线段AB
② 将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD
(2) 若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值
21.袋中装有大小相同的2个红球和2个绿球
(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球
① 求第一次摸到绿球,第二次摸到红球的概率
② 求两次摸到的球中有1个绿球和1个红球的概率
(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果
22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5
(1) 如图(1),若点P是弧AB的中点,求PA的长
(2) 如图(2),若点P是弧BC的中点,求PA得长
23.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元
(1) 求出y与x的函数关系式
(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果
24.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ
(1) 若△BPQ与△ABC相似,求t的值
(2) 连接AQ、CP,若AQ⊥CP,求t的值
(3) 试证明:PQ的中点在△ABC的一条中位线上
25.如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A、B两点
(1) 直线AB总经过一个定点C,请直接写出点C坐标
(2) 当k=-时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5
(3) 若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离
2014年武汉市中考数学试卷答案
一、1.A 2.C3.B4.D 5.C6.A7.D8.C9.B10.B
二、填空题(共6小题,每小题3分,满分18分)
11. ﹣5 .12. a(a+1)(a﹣1) . 13. .14. 2200.15. .16. .
三、17. 解:去分母得:2x=3x﹣6,
解得:x=6,
经检验x=6是分式方程的解.
18.解:把点(1,﹣1)代入直线y=2x﹣b得,
﹣1=2﹣b,解得,b=3.
函数解析式为y=2x﹣3.解2x﹣3≥0得,x≥.
19.证明:∵在△ODC和△OBA中,
∵,
∴△ODC≌△OBA(SAS),
∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).
20.解:(1)①如图所示;
②直线CD如图所示;
(2)∵A(0,4),C(3,0),
∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.
21.解:(1)①画树状图得:
∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,
∴第一次摸到绿球,第二次摸到红球的概率为:=;
②∵两次摸到的球中有1个绿球和1个红球的有8种情况,
∴两次摸到的球中有1个绿球和1个红球的为:=;
(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,
∴两次摸到的球中有1个绿球和1个红球的概率是:=.
22.解:(1)如图(1)所示,连接PB,
∵AB是⊙O的直径且P是的中点,
∴∠PAB=∠PBA=45°,∠APB=90°,
又∵在等腰三角形△ABC中有AB=13,
∴PA===.
(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,
∵P点为弧BC的中点,
∴OP⊥BC,∠OMB=90°,
又因为AB为直径
∴∠ACB=90°,
∴∠ACB=∠OMB,
∴OP∥AC,
∴∠CAB=∠POB,
又因为∠ACB=∠ONP=90°,
∴△ACB∽△0NP
∴=,
又∵AB=13 AC=5 OP=,
代入得 ON=,∴AN=OA+ON=9∴在RT△OPN中,有NP2=0P2﹣ON2=36
在RT△ANP中 有PA===3∴PA=3.
23.解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+200,
当50≤x≤90时,
y=(200﹣2x)(90﹣30)=﹣120x+12000,
综上所述:y=;
(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
当x=45时,y最大=﹣2×452+180×45+2000=6050,
当50≤x≤90时,y随x的增大而减小,
当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;
(3)当20≤x≤60时,每天销售利润不低于4800元.
24.解:(1)①当△BPQ∽△BAC时,
∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,
∴=,∴t=1;
②当△BPQ∽△BCA时,
∵=,
∴=,∴t=,
∴t=1或时,△BPQ与△ABC相似;
(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,
∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,
∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,
∴△ACQ∽△CMP,∴=,∴=,解得:t=;
(3)如图,仍有PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,
∵∠ACB=90°,
∴DF为梯形PECQ的中位线,
∴DF=,
∵QC=4t,PE=8﹣BM=8﹣4t,
∴DF==4,
∵BC=8,过BC的中点R作直线平行于AC,
∴RC=DF=4成立,∴D在过R的中位线上,
∴PQ的中点在△ABC的一条中位线上.
25.解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.
∴直线AB:y=kx+2k+4必经过定点(﹣2,4).∴点C的坐标为(﹣2,4).
(2)∵k=﹣,∴直线的解析式为y=﹣x+3.
联立,
解得:或.∴点A的坐标为(﹣3,),点B的坐标为(2,2).
过点P作PQ∥y轴,交AB于点Q,
过点A作AM⊥PQ,垂足为M,
过点B作BN⊥PQ,垂足为N,如图1所示.
设点P的横坐标为a,则点Q的横坐标为a.
∴yP=a2,yQ=﹣a+3.
∵点P在直线AB下方,∴PQ=yQ﹣yP
=﹣a+3﹣a2
∵AM+NB=a﹣(﹣3)+2﹣a=5.∴S△APB=S△APQ+S△BPQ
=PQ•AM+PQ•BN
=PQ•(AM+BN)
=(﹣a+3﹣a2)•5=5.
整理得:a2+a﹣2=0.
解得:a1=﹣2,a2=1.
当a=﹣2时,yP=×(﹣2)2=2.
此时点P的坐标为(﹣2,2).
当a=1时,yP=×12=.
此时点P的坐标为(1,).
∴符合要求的点P的坐标为(﹣2,2)或(1,).
(3)过点D作x轴的平行线EF,
作AE⊥EF,垂足为E,
作BF⊥EF,垂足为F,如图2.w W w .x K b 1.c o M
∵AE⊥EF,BF⊥EF,
∴∠AED=∠BFD=90°.
∵∠ADB=90°,
∴∠ADE=90°﹣∠BDF=∠DBF.
∵∠AED=∠BFD,∠ADE=∠DBF,
∴△AED∽△DFB.
∴.
设点A、B、D的横坐标分别为m、n、t,
则点A、B、D的纵坐标分别为m2、n2、t2.
AE=yA﹣yE=m2﹣t2.
BF=yB﹣yF=n2﹣t2.
ED=xD﹣xE=t﹣m,
DF=xF﹣xD=n﹣t.
∵,
∴=.
化简得:mn+(m+n)t+t2+4=0.
∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,
∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.
∴m+n=2k,mn=﹣4k﹣8.
∴﹣4k﹣8+2kt+t2+4=0,
即t2+2kt﹣4k﹣4=0.
即(t﹣2)(t+2k+2)=0.
∴t1=2,t2=﹣2k﹣2(舍).
∴定点D的坐标为(2,2).
过点D作x轴的平行线DG,
过点C作CG⊥DG,垂足为G,如图3所示.
∵点C(﹣2,4),点D(2,2),
∴CG=4﹣2=2,DG=2﹣(﹣2)=4.
∵CG⊥DG,
∴DC=
=
=
=2.
过点D作DH⊥AB,垂足为H,如图3所示,
∴DH≤DC.
∴DH≤2.
∴当DH与DC重合即DC⊥AB时,
点D到直线AB的距离最大,最大值为2.
∴点D到直线AB的最大距离为2.
2015年武汉市中考数学试卷
一、选择题(共10小题,每小题3分,共30分)
1.在实数-3、0、5、3中,最小的实数是( )
A.-3 B.0 C.5 D.3
2.若代数式在实数范围内有意义,则x的取值范为是( )
A.x≥-2 B.x>-2 C.x≥2 D.x≤2
3.把a2-2a分解因式,正确的是( )
A.a(a-2) B.a(a+2) C.a(a2-2) D.a(2-a)
4.一组数据3、8、12、17、40的中位数为( )
A.3 B.8 C.12 D.17
5.下列计算正确的是( )
A.2x2-4x2=-2 B.3x+x=3x2 C.3x·x=3x2 D.4x6÷2x2=2x3
6.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1)
B.(2,0)
C.(3,3)
D.(3,1)
7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
8.下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( )
A.4:00气温最低 B.6:00气温为24℃ C.14:00气温最高 D.气温是30℃的为16:00
9.在反比例函数图象上有两点A(x1,y1)、B(x2,y2),x1<0<y1,y1<y2,则m的取值范围是( )
A.m> B.m< C.m≥ D.m≤
10.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是( )
A.
B.
C.
D.
二、填空题(共6小题,每题3分,共18分)
11.计算:-10+(+6)=_________
12.中国的领水面积约为370 000 km2,将数370 000用科学记数法表示为_________
13.一组数据2、3、6、8、11的平均数是_________
14.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省__元
15.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=_________
16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________
三、解答题(共8小题,共72分)
17.(8分)已知一次函数y=kx+3的图象经过点(1,4)(1)求这个一次函数的解析式
(2)求关于x的不等式kx+3≤6的解集
18.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF求证:(1) △ABC≌△DEF (2) AB∥DE
19.(8分)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4
(1) 随机摸取一个小球,直接写出“摸出的小球标号是3”的概率
(2) 随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:
① 两次取出的小球一个标号是1,另一个标号是2的概率
② 第一次取出标号是1的小球且第二次取出标号是2的小球的概率
20.(8分),如图,已知点A(-4,2)、B(-1,-2),□ABCD的对角线交于坐标原点O
(1) 请直接写出点C、D的坐标(2) 写出从线段AB到线段CD的变换过程
(3) 直接写出□ABCD的面积
21.(8分)如图,AB是⊙O的直径,∠ABT=45°,AT=AB
(1) 求证:AT是⊙O的切线
(2) 连接OT交⊙O于点C,连接AC,求tan∠TAC的值
22.(8分)已知锐角△ABC中,边BC长为12,高AD长为8
(1) 如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K
① 求的值
② 设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2) 若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长
23.(10分)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3
(1) 求证:EF+PQ=BC
(2) 若S1+S3=S2,求的值
(3) 若S3-S1=S2,直接写出的值
24.(12分)已知抛物线y=x2+c与x轴交于A(-1,0),B两点,交y轴于点C
(1) 求抛物线的解析式
(2) 点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)
(3) 如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长
2015年武汉市中考数学试卷答案
一、1.A 2.C 3.A 4.C5 C 6.A 7.B 8.D 9.D 10.D
二、11.-4 12.3.7×105 13.6 14.2
15. 1016.
17.解:(1)把(1,4)代入y=kx+3得,
4=k+3
K=1
∴一次函数解析式为y=x+3;
(2) kx+3≤6
X+3≤6
∴x≤3.
18.证明:(1)∵AC⊥BC,DF⊥EF,∴∠ACB=∠DFE,
∵AC=DF, BC=EF,∴△ABC≌△DEF;
(2)∵△ABC≌△DEF,
∴∠ACB=∠DFE,∴AB∥DE.
19. 解:(1)P摸出的小球标号是3=
(2)列表如下:
1
2
3
4
1
(1,1)
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,2)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,3)
(3,4)
4
(4,1)
(4,2)
(4,3)
(4,4)
①由列表可知:共有16种等可能的结果,其中一个标号是1,另一个标号是2结果共有2种,
∴P(一个标号是1,另一个标号是2)= ;
②共有16种等可能的结果,其中第一次取出标号是1的小球且第二次取出标号是2的结果共有1种,
∴P(第一次取出标号是1的小球且第二次取出标号是2)= .
20. 解:(1)C(4,-2)、D(1,2);
(2)AB绕点O旋转180°得到线段CD,或作AB关于原点O的中心对称图形得到线段CD;
(3)BC=5,BC上的高为4,所以平行四边形ABCD的面积为5×4=20.
21. 证明:(1)∵AB=AT,
∴∠ATB=∠B=45°,
∴∠BAT=90°,
∴AT是⊙O的切线;
(2)设⊙O半径为r,延长TO交⊙O于D,连接AD.
∵CD是直径,
∴∠CAD=∠BAT=90°,
∴∠TAC=∠OAD=∠D.
又∠ATC=∠DTA,
∴△TAC∽△TDA,
∴,
∴TA2=TC·TD,即即4r2= TC(TC+2r),
解得TA=,
∴tan∠TAC= tan∠D===.
22. 解:(1)∵EF∥BC,
∴△AEF∽△ABC,
∴,即
∴;
(2)由题意知EH=KD=x,AK=8-x.
∵,∴,∴EF=,
∴S=EF×EH=x=,∴S的最大值是24;
(3)①两顶点在底边BC上时,由(1)知,∵PQMN是正方形,
∴AK=AD-DK=AD-PQ=8-PQ,∴,∴PQ=4.8;
②正方形两顶点M、N在腰AB上时如图时,作CH⊥AB于H,交PQ于G,则CG=CH-HG=CH-PQ=9.6-PQ,
如图:
∵AB=AC,AD⊥BC,∴BD=6
又AD=8,∴AB=10,∴AB×CH=BC×AD,
∴CH=9.6.
由(1)知,即,∴PQ=,
综上,正方形PQMN的边长为4.8或.
23.证明:(1)作QN∥AB,交BC于N,则∠NQP=∠A,∠QNC=∠B.
∵EF∥BC,∴∠AEF=∠B,∴∠AEF=∠QNC.
∵PQ∥BC,∴四边形PQNB是平行四边形,∴BN=PQ,QN=PB=AE,∴△AEF≌△QNC,
∴EE=NC,∴BC=BN+NC=EF+PQ;
(2)∵EF∥PQ∥BC,∴△AEF∽△APQ∽△ABC∴
整理得S2=①;
同理=
∵S1+S3=S2,∴,
整理得S2=②,
①=②即=
整理得PE2=4AE2,PE=2AE,∴=2;
(3) ∵△AEF∽△ABC,
∴=,
∵S3- S1=S2,
∴,
整理得S3=,
∴-S1=
整理得PE2=2AE2,∴PE=AE,=.
24. 解:(1)把(1,0)代入y=,得c=-1,所以抛物线解析式为y=;
(2)作CH⊥EF于点H,则,△EHC∽△FGC.
∵E(m,n),∴F(m, ),
又C(0,-),∴EH=n+,CH=-m,FG=-m,CG=m2,
∵△EHC∽△FGC,∴,即,∴n+=2,∴n=(-2<m<0);
(3)由题意知点P(t,0)的横坐标为,M(t,),△OPM∽△QPB,
∴,
其中,OP=t,PM=,PB=1-t,PQ=,BQ==,
∴PQ+BQ+PB=++1-t=2.
2016年武汉市中考数学试卷
一、选择题(共10小题,每小题3分,共30分)
1.实数的值在( )
A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间
2.若代数式在实数范围内有意义,则实数x的取值范围是( )
A.x<3 B.x>3 C.x≠3 D.x=3
3.下列计算中正确的是( )
A.a·a2=a2 B.2a·a=2a2 C.(2a2)2=2a4 D.6a8÷3a2=2a4
4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.摸出的是3个白球 B.摸出的是3个黑球
C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球
5.运用乘法公式计算(x+3)2的结果是( )
A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9
6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( )
A.a=5,b=1 B.a=-5,b=1 C.a=5,b=-1 D.a=-5,b=-1
7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
8.某车间20名工人日加工零件数如下表所示:
日加工零件数
4
5
6
7
8
人数
2
6
5
4
3
这些工人日加工零件数的众数、中位数、平均数分别是( )
A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6
9.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
A.π B.π C. D.2
10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5 B.6 C.7 D.8
第9题图 第14题图 第16题图
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算5+(-3)的结果为_______.
12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为__________.
13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为_______.
14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.
15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.
16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则BD的长为_______.
三、解答题(共8题,共72分)
17.(本题8分)解方程:5x+2=3(x+2) .
18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.
19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:
请你根据以上的信息,回答下列问题:
(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;
(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.
20.(本题8分)已知反比例函数.
(1) 若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;
(2) 如图,反比例函数(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.
21.(本题8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1) 求证:AC平分∠DAB;(2) 连接BE交AC于点F,若
cos∠CAD=,求的值.
22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)
甲
6
a
20
200
乙
20
10
40+0.05x2
80
其中a为常数,且3≤a≤5.
(1) 若产销甲、 乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
23.(本题10分)在△ABC中,P为边AB上一点.
(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;
(2) 若M为CP的中点,AC=2,
① 如图2,若∠PBM=∠ACP,AB=3,求BP的长;
② 如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
24.(本题12分)抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若P(1,-3)、B(4,0),
① 求该抛物线的解析式;
② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2) 如图2,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
2016年武汉市中考数学试卷答案
一、1. B.2. C.3. B4. A.5. C.6. D.7. A.8 D.9.B.10. A.
二、11. 2.12. 6.3×104.13. .14. 36°.15. -4≤b≤-2.16. .
三、17.解:去括号得:5x+2=3x+6,
移项合并得:2x=4,
解得:x=2.
18.证明:∵BE=CF,∴BC=EF,
在△ABC与△DEF中,
AB=DE
AC=DF ,
BC=EF
∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.
19.解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);
∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,
∴“体育”类人数占被调查人数的百分比为:1-8%-30%-36%-6%=20%,
∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;
故答案为:50,3,72°.
(2)2000×8%=160(人),
答:估计该校2000名学生中最喜爱新闻的人数约有160人.
20.解:(1)解 得kx2+4x-4=0.
∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,
∴△=16+16k=0,∴k=-1;
(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.
21.(1)证明:连接OC,
∵CD是⊙O的切线,∴CD⊥OC,
又∵CD⊥AD,∴AD∥OC,
∴∠CAD=∠ACO,
∵OA=OC,∴∠CAO=∠ACO,
∴∠CAD=∠CAO,即AC平分∠DAB;
(2)解:连接BE、BC、OC,BE交AC于F交OC于H.
∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,
∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,
∴DC=EH=HB,DE=HC,
∵cos∠CAD=,设AD=4a,AC=5a,则DC=EH=HB=3a,
∵cos∠CAB=,
∴AB=a,BC=a,
在RT△CHB中,CH=,
∴DE=CH=a,AE=,
∵EF∥CD,∴.
22.解:(1)y1=(6-a)x-20,(0<x≤200)
y2=10x-40-0.05x2=-0.05x2+10x-40.(0<x≤80).
(2)对于y1=(6-a)x-20,∵6-a>0,
∴x=200时,y1的值最大=(1180-200a)万元.
对于y2=-0.05(x-100)2+460,
∵0<x≤80,
∴x=80时,y2最大值=440万元.
(3)①(1180-200a)=440,解得a=3.7,
②(1180-200a)>440,解得a<3.7,
③(1180-200a)<440,解得a>3.7,
∵3≤a≤5,
∴当a=3.7时,生产甲乙两种产品的利润相同.
当3≤a<3.7时,生产甲产品利润比较高.
当3.7<a≤5时,生产乙产品利润比较高.
23.解:(1)∵∠ACP=∠B,∠A=∠A,
∴△ACP∽△ABC,∴,∴AC2=AP•AB;
(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3-x,
∵M是PC的中点,
∴MG∥AC,
∴∠BGM=∠A,
∵∠ACP=∠PBM,
∴△APC∽△GMB,
∴,即,∴x=,
∵AB=3,∴AP=3-,∴PB=;
②过C作CH⊥AB于H,延长AB到E,使BE=BP,
∵∠ABC=45°,∠A=60°,
∴CH=,HE=+x,
∵CE2=()2+(+x)2,
∵PB=BE,PM=CM,
∴BM∥CE,
∴∠PMB=∠PCE=60°=∠A,
∵∠E=∠E,
∴△ECP∽△EAC,∴,∴CE2=EP•EA,
∴3+3+x2+2x=2x(x++1),
∴x=-1,∴PB=-1.
24.解:(1)①将P(1,-3)、B(4,0)代入y=ax2+c得
,解得 ,
抛物线的解析式为:.
②如图1,
当点D在OP左侧时,
由∠DPO=∠POB,得
DP∥OB,
D与P关于y轴对称,P(1,-3),
得D(-1,-3);
当点D在OP右侧时,延长PD交x轴于点G.
作PH⊥OB于点H,则OH=1,PH=3.
∵∠DPO=∠POB,
∴PG=OG.
设OG=x,则PG=x,HG=x-1.
在Rt△PGH中,由x2=(x-1)2+32,得x=5.
∴点G(5,0).
∴直线PG的解析式为
解方程组 得:
∵P(1,-3),
∴ D2(,)
∴点D的坐标为(1,-3)或(,)
(2)如图2,点P运动时,是定值,定值为2,理由如下:
作PQ⊥AB于Q点,设P(m,am2+c),A(-t,0),B(t,0),则at2+c=0,c=-at2.
∵PQ∥OF,
∴,∴.
同理OE=-amt+at2.
∴OE+OF=2at2=-2c=2OC.
∴=2.
2017年武汉市中考数学试卷
一、选择题(共10小题,每小题3分,共30分)
1.计算36的结果为( )
A.6 B.﹣6 C.18 D.﹣18
2.若代数式1a-4在实数范围内有意义,则实数a的取值范围为( )
A.a=4 B.a>4 C.a<4 D.a≠4
3.下列计算的结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x2)3
4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩/m
1.50
1.60
1.65
1.70
1.75
1.80
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为( )
A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70
5.计算(x+1)(x+2)的结果为( )
A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2
6.点A(﹣3,2)关于y轴对称的点的坐标为( )
A.(3,﹣2) B.(3,2) C.(﹣3,﹣2) D.(2,﹣3)
7.某物体的主视图如图所示,则该物体可能为( )
A. B. C. D.
8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为( )
A.9 B.10 C.11 D.12
9.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )
A.32 B.32 C.3 D.23
10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A.4 B.5 C.6 D.7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算2×3+(﹣4)的结果为 .
12.计算xx+1﹣1x+1的结果为 .
13.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为 .
14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .
15.如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为 .
16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是 .
三、解答题(共8题,共72分)
17.(8分)解方程:4x﹣3=2(x﹣1)
18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.
19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
各部门人数及每人所创年利润统计表
部门
员工人数
每人所创的年利润/万元
A
5
10
B
b
8
C
c
5
(1)①在扇形图中,C部门所对应的圆心角的度数为
②在统计表中,b= ,c=
(2)求这个公司平均每人所创年利润.
20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?
21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D
(1)求证:AO平分∠BAC;
(2)若BC=6,sin∠BAC=35,求AC和CD的长.
22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点
(1)求k的值;
(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;
(3)直接写出不等式6x-5>x的解集.
23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;
(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=35,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)
24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;
(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.
2017年武汉市中考数学试卷答案
一、1. A.2. D.3. C.4. C.5. B6. B.7. A.8. B.9. C10. D.
二、11. 2 12.x-1.13. 30°.14.15. 33﹣3.16.-3
相关试卷
这是一份2014年至2018年潍坊市五年中考数学试卷及答案(微信支付),共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2011年至2018年武汉市八年中考数学试卷和答案(微信支付),共56页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2009年至2018年武汉市十年中考数学试卷及答案(微信支付),共68页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。