


2012年青岛市中考数学试卷和答案
展开
这是一份2012年青岛市中考数学试卷和答案,共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
2012年青岛市中考数学试卷一、选择题(本题满分24分,共8小题,每小题3分)1.-2的绝对值是( )A.- B.-2 C. D.22.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.如图,正方体表面上画有一圈黑色线条,则它的左视图是( )A. B. C. D.4.已知⊙O1与⊙O2的半径分别为4和6,O1O2=2,则⊙O1与⊙O2的位置关系是( )A.内切 B.相交 C.外切 D.外离5.某次知识竞赛中,10名学生的成绩统计如下:分数(分)60708090100人数(人)11521则下列说明正确的是【 】A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分 D.学生成绩的平均分是80分6.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A1的坐标是( ) A.(6,1) B.(0,1) C.(0,-3) D.(6,-3) 7.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )A. B. C. D.8.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数y=-的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是( )A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3二、填空题(本题满分18分,共6小题,每小题3分)9.(-3)0+×= .10.为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为 元.11.如图,点A、B、C在⊙O上,∠AOC=60º,则∠ABC= º. 12.如图,在一块长为22m、宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m2.若设道路宽为xm,则根据题意可列方程为 .13.如图,在△ABC中,∠ACB=90º,∠ABC=30º,AC=1.现在将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为 .14.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a、c,∠.求作:△ABC,使BC=a,AB=c,∠ABC=∠. 结论:四、解答题(本题满分94分,共9小题)16.(8分)(1)化简:÷; (2)解不等式组: 17.(6分)某校为开展每天一小时阳光体育活动,准备组建篮球、排球、足球、乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,即可以兼报多个小组.该校对八年级全体学生报名情况进行了调查,并将所得数据绘制成如下两幅统计图:根据图中的信息,解答下列问题:(1)补全条形统计图;(2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;(3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议(不超过30字). 18.(6分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随机抽取一张奖券,抽得奖券“紫气东来”、“化开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来化开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由. 19.(6分)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84km,返回时经过跨海大桥,全程约45km.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20min.求小丽所乘汽车返回时的平均速度. 20.(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22º≈,cos22º≈,tan22º≈) 21.(8分)如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?请说明理由. 22.(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示.(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润. 23. (10分)问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算) 24.(12分)如图,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,PQ⊥AB?(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为ycm2,求y与t之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之比为S△PQE∶S五边形PQBCD=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由. 2012年青岛市中考数学试卷答案1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A 9.7.10.1.6×1010.11.150°.12.(22﹣x)(17﹣x)=300.13..14.5.四、解答题(本题满分74分,共有9道小题)16.解:(1)原式==…4分解:(2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:(1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:(2)报名参加2个兴趣小组的有400×=160人(3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:(1)或5%;(2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算. 19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时. 20.解:(1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=12.即教学楼的高12m.(2)由(1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为27m. 21.(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形. 22.解:(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点(14,180),(16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;(2)w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;(3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元. 23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分,故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2(1﹣1),三角形内部2个点时,共分割成5部分,5=3+2(2﹣1),三角形内部3个点时,共分割成7部分,7=3+2(3﹣1),…,所以,三角形内部有m个点时,3+2(m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2(m﹣1)或2m+2;…6分问题解决:n+2(m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=2012代入上述代数式,得2m+n﹣2,=2×2012+8﹣2,=4024+8﹣2,=4030.…10分 24.解:(1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.(2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=(4﹣t).S△PQE=EQ•PM=(5﹣2t)•(4﹣t)=t2﹣t+6,S梯形DCBE=×(4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.(3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29,则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×(4﹣2)=,ME=×(4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).
相关试卷
这是一份2017年青岛市中考数学试卷和答案,共6页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2016年青岛市中考数学试卷和答案,共7页。试卷主要包含了选择题,填空题,作图题用圆规,解答题等内容,欢迎下载使用。
这是一份2015年青岛市中考数学试卷和答案,共6页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
