2017年辽宁省沈阳市中考数学试卷与答案
展开2017年辽宁省沈阳市中考数学试卷
一、选择题(本大题共10小题,每小题2分,共20分)
1. 7的相反数是( )
A.﹣7 B.﹣ C. D.7
2.如图所示的几何体的左视图( )
A. B. C. D.
3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万.
A.83×10 B.8.3×102 C.8.3×103 D.0.83×103
4.如图,AB∥CD,∠1=50°,∠2的度数是( )
A.50° B.100° C.130° D.140°
5.点A(﹣2,5)在反比例函数y=(k≠0)的图象上,则k的值是( )
A.10 B.5 C.﹣5 D.﹣10
6.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是( )
A.(﹣2,﹣8) B.(2,8) C.(﹣2,8) D.(8,2)
7.下列运算正确的是( )
A.x3+x5=x8 B.x3+x5=x15 C.(x+1)(x﹣1)=x2﹣1 D.(2x)5=2x5
8.下列事件中,是必然事件的是( )
A.将油滴入水中,油会浮在水面上 B.车辆随机到达一个路口,遇到红灯
C.如果a2=b2,那么a=b D.掷一枚质地均匀的硬币,一定正面向上
9.在平面直角坐标系中,一次函数y=x﹣1的图象是( )
A. B. C. D.
10.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )
A. B.2 C.2 D.2
第4题图 第10题图 第16题图
二、填空题(本大题共6小题,每小题3分,共18分)
11.因式分解3a2+a= .
12.一组数2,3,5,5,6,7的中位数是 .
13.•= .
14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是 (填“甲”或“乙”或“丙”)
15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/时,才能在半月内获得最大利润.
16.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是 .
三、解答题(本大题共22分)
17.(6分)计算|﹣1|+3﹣2﹣2sin45°+(3﹣π)0.
18.(8分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.
求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
19.(8分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.
四、解答题(每题8分,共16分)
20.(8分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)请根据以上信息直接在答题卡中补全条形统计图;
(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.
21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?
五、解答题(共10分)
22.(10分)如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.
(1)求证:EF是⊙O的切线;
(2)若sin∠EGC=,⊙O的半径是3,求AF的长.
六、解答题(共10分)
23.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标为(6,0),点B的坐标为(0,8),点C的坐标为(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向中点B匀速运动,动点N从O点开始,以每秒两个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t秒(t>0),△OMN的面积为S.
(1)填空:AB的长是 ,BC的长是 ;
(2)当t=3时,求S的值;
(3)当3<t<6时,设点N的纵坐标为y,求y与t的函数关系式;
(4)若S=,请直接写出此时t的值.
七、解答题(共12分)
24.(12分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.
(1)如图1,当点E与点A重合时,请直接写出BF的长;
(2)如图2,当点E在线段AD上时,AE=1;
①求点F到AD的距离; ②求BF的长;
(3)若BF=3,请直接写出此时AE的长.
八、解答题(共12分)
25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.
(1)填空:OA的长是 ,∠ABO的度数是 度;
(2)如图2,当DE∥AB,连接HN.
①求证:四边形AMHN是平行四边形;
②判断点D是否在该抛物线的对称轴上,并说明理由;
(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.
2017年辽宁省沈阳市中考数学试卷答案
1. A.2. D.3. B.4. C.5. D.6.A.7. C8. A.9. B10. B.
11. a(3a+1).12. 5.13. 14.丙.15. 35.16. .
17.解:|﹣1|+3﹣2﹣2sin45°+(3﹣π)0
=﹣1+﹣2×+1
=
18.证明:(1)∵四边形ABCD是菱形,
∴AD=CD,∠A=∠C,
∵DE⊥BA,DF⊥CB,
∴∠AED=∠CFD=90°,
在△ADE和△CDE,
∵,
∴△ADE≌△CDE;
(2)∵四边形ABCD是菱形,
∴AB=CB,
∵△ADE≌△CDF,
∴AE=CF,
∴BE=BF,
∴∠BEF=∠BFE.
19.解:画树状图如下:
由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果,
∴两次抽取的卡片上的数字都是奇数的概率为.
20.解:(1)m=5÷10%=50,n%=15÷50=30%,
故答案为:50,30;
(2)由题意可得,
“艺术”所对应的扇形的圆心角度数是:360°×=72°,
故答案为:72;
(3)文学有:50﹣10﹣15﹣5=20,
补全的条形统计图如右图所示;
(4)由题意可得,
600×=180,
即该校600名学生中有180名学生最喜欢科普类图书.
21.解:设小明答对了x题,根据题意可得:
(25﹣x)×(﹣2)+6x>90,
解得:x>17,
∵x为非负整数,
∴x至少为18,
答:小明至少答对18道题才能获得奖品.
22.解:(1)如图,连接EO,则OE=OC,
∴∠EOG=2∠C,
∵∠ABG=2∠C,
∴∠EOG=∠ABG,
∴AB∥EO,
∵EF⊥AB,∴EF⊥OE,
又∵OE是⊙O的半径,
∴EF是⊙O的切线;
(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,
∴∠A=∠C,∴BA=BC=6,
在Rt△OEG中,∵sin∠EGO=,
∴OG===5,
∴BG=OG﹣OB=2,
在Rt△FGB中,∵sin∠EGO=,
∴BF=BGsin∠EGO=2×=,则AF=AB﹣BF=6﹣=.
23.解:(1)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,
∴AB===10.
BC==6,
故答案为10,6.
(2)如图1中,作CE⊥x轴于E.连接CM.
∵C(﹣2,4),
∴CE=4OE=2,
在Rt△COE中,OC===6,
当t=3时,点N与C重合,OM=3,
∴S△ONM=•OM•CE=×3×4=6,即S=6.
(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB于G,CF⊥OB于F.则F(0,4).
∵OF=4,OB=8,
∴BF=8﹣4=4,
∵GN∥CF,
∴=,即=,
∴BG=8﹣t,
∴y=OB﹣BG=8﹣(8﹣t)=t.
(4)①当点N在边长上,点M在OA上时,•t•t=,
解得t=(负根已经舍弃).
②如图3中,当M、N在线段AB上,相遇之前.
作OE⊥AB于E,则OE==,
由题意[10﹣(2t﹣12)﹣(t﹣6)]•=,
解得t=8,
同法当M、N在线段AB上,相遇之后.
由题意•[(2t﹣12)+(t﹣6)﹣10]•=,
解得t=,
综上所述,若S=,此时t的值8s或s或s.
24.解:(1)作FH⊥AB于H,如图1所示:
则∠FHE=90°,
∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=4,EF=CE,∠ADC=∠DAH=∠BAD=∠CEF=90°,
∴∠FEH=∠CED,
在△EFH和△CED中,,
∴△EFH≌△CED(AAS),
∴FH=CD=4,AH=AD=4,
∴BH=AB+AH=8,
∴BF===4;
(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:
则FM=AH,AM=FH,
①∵AD=4,AE=1,∴DE=3,
同(1)得:△EFH≌△CED(AAS),
∴FH=DE=3,EH=CD=4,
即点F到AD的距离为3;
②∴BM=AB+AM=4+3=7,FM=AE+EH=5,
∴BF===;
(3)分两种情况:
①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,
如图3所示:
同(1)得::△EFH≌△CED,
∴FH=DE=4+AE,EH=CD=4,
∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,
由勾股定理得:(4﹣AE)2+(8+AE)2=(3)2,
解得:AE=1或AE=﹣5(舍去),
∴AE=1;
②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:
同理得:AE=2+;
综上所述:AE的长为1或2+.
25.解:(1)当x=0时,y=8,
∴B(0,8),
∴OB=8,
当y=0时,y=﹣x2﹣x+8=0,
x2+4x﹣96=0,
(x﹣8)(x+12)=0,
x1=8,x2=﹣12,
∴A(8,0),
∴OA=8,
在Rt△AOB中,tan∠ABO===,
∴∠ABO=30°,
故答案为:8,30;
(2)①证明:∵DE∥AB,
∴,
∵OM=AM,
∴OH=BH,
∵BN=AN,
∴HN∥AM,
∴四边形AMHN是平行四边形;
②点D在该抛物线的对称轴上,
理由是:如图1,过点D作DR⊥y轴于R,
∵HN∥OA,
∴∠NHB=∠AOB=90°,
∵DE∥AB,
∴∠DHB=∠OBA=30°,
∵Rt△CDE≌Rt△ABO,
∴∠HDG=∠OBA=30°,
∴∠HGN=2∠HDG=60°,
∴∠HNG=90°﹣∠HGN=90°﹣60°=30°,
∴∠HDN=∠HND,
∴DH=HN=OA=4,
∴Rt△DHR中,DR=DH==2,
∴点D的横坐标为﹣2,
∵抛物线的对称轴是直线:x=﹣=﹣=﹣2,
∴点D在该抛物线的对称轴上;
(3)如图3中,连接PQ,作DR⊥PK于R,在DR上取一点T,使得PT=DT.设PR=a.
∵NA=NB,
∴HO=NA=NB,
∵∠ABO=30°,
∴∠BAO=60°,
∴△AON是等边三角形,
∴∠NOA=60°=∠ODM+∠OMD,
∵∠ODM=30°,
∴∠OMD=∠ODM=30°,
∴OM=OD=4,易知D(﹣2,﹣2),Q(﹣2,10),
∵N(4,4),
∴DK=DN==12,
∵DR∥x轴,
,∴∠KDR=∠OMD=30°
∴RK=DK=6,DR=6,
∵∠PDK=45°,
∴∠TDP=∠TPD=15°,
∴∠PTR=∠TDP+∠TPD=30°,
∴TP=TD=2a,TR=a,
∴a+2a=6,
∴a=12﹣18,
可得P(﹣2﹣6,10﹣18),
∴PQ==12.
2018年辽宁省沈阳市中考数学试卷与答案: 这是一份2018年辽宁省沈阳市中考数学试卷与答案,共9页。试卷主要包含了选择题,细心填一填,解答题题,解答题等内容,欢迎下载使用。
2016年辽宁省沈阳市中考数学试卷与答案: 这是一份2016年辽宁省沈阳市中考数学试卷与答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2015年辽宁省沈阳市中考数学试卷与答案: 这是一份2015年辽宁省沈阳市中考数学试卷与答案,共10页。试卷主要包含了比0大的数是,下列事件为必然事件的是,下列计算结果正确的是,分解因式,不等式组的解集是 等内容,欢迎下载使用。