|试卷下载
终身会员
搜索
    上传资料 赚现金
    2016年至2018年山东省济宁市三年中考数学试卷与答案
    立即下载
    加入资料篮
    2016年至2018年山东省济宁市三年中考数学试卷与答案01
    2016年至2018年山东省济宁市三年中考数学试卷与答案02
    2016年至2018年山东省济宁市三年中考数学试卷与答案03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2016年至2018年山东省济宁市三年中考数学试卷与答案

    展开
    这是一份2016年至2018年山东省济宁市三年中考数学试卷与答案,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

     2016年山东省济宁市中考数学试卷
    一、选择题:本大题共10小题,每小题3分,共30分
    1.在:0,﹣2,1, 这四个数中,最小的数是(  )
    A.0 B.﹣2 C.1 D.
    2.下列计算正确的是(  )
    A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x
    3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是(  )
    A.20° B.30° C.35° D.50°
    4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是(  )
    A. B. C. D.
    5.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是(  )
    A.40° B.30° C.20° D.15°

    6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是(  )
    A.﹣3 B.0 C.6 D.9
    7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(  )
    A.16cm B.18cm C.20cm D.21cm
    参赛者编号
    1
    2
    3
    4
    5
    成绩/分
    96
    88
    86
    93
    86 [
    8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:

    那么这五位同学演讲成绩的众数与中位数依次是(  )
    A.96,88, B.86,86 C.88,86 D.86,88
    9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是(  )
    A. B. C. D.

    10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于(  )
    A.60 B.80 C.30 D.40
    二、填空题:本大题共5小题,每小题3分,共15分
    11.若式子有意义,则实数x的取值范围是      .
    12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:      ,使△AEH≌△CEB.

    13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于      .
    14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是      km/h.
    15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为      .
    三、解答题:本大题共7小题,共55分
    16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.





    17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.

    请根据图1、图2解答下列问题:
    (1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;
    (2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.





    18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.
    (1)求新坡面的坡角a;
    (2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.


















    19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.
    (1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?
    (2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?

















    20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
    (1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.


















    21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.
    例如:求点P(﹣1,2)到直线y=3x+7的距离.
    解:因为直线y=3x+7,其中k=3,b=7.
    所以点P(﹣1,2)到直线y=3x+7的距离为:d====.
    根据以上材料,解答下列问题:
    (1)求点P(1,﹣1)到直线y=x﹣1的距离;
    (2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;
    (3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.












    22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
    (1)求抛物线m的解析式;
    (2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
    (3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.

     
    2016年山东省济宁市中考数学答案
    1. B.2. A3. C.4. D5. C.6. A.7. C.8. D9. B.10. D.
    11. x≥1.12. AH=CB或EH=EB或AE=CE.13. 80.15. .
    16.解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.
    17.解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),
    补全条形图如图:

    (2)1.3×17%=0.221(万元).
    答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.
    18.解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.
    答:新坡面的坡角a为30°;
    (2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,
    ∵坡面BC的坡度为1:1,新坡面的坡度为1:,
    ∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.

    19.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,
    得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),
    答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;
    (2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,
    得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,
    答:今年该地至少有1900户享受到优先搬迁租房奖励.
    20.解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,
    ∵BD=,∴AB=1,∴正方形ABCD的边长为1;
    (2)CN=CM.
    证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,
    ∵∠ANE=∠CNB,∴∠BAF=∠BCN,
    在△ABF和△CBN中,
    ,∴△ABF≌△CBN(AAS),∴AF=CN,
    ∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,
    ∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,
    ∴==,即CN=CM.
    21.解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,
    所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;
    (2)⊙Q与直线y=x+9的位置关系为相切.
    理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,
    而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;
    (3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,
    因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,
    因为直线y=﹣2x+4与y=﹣2x﹣6平行,
    所以这两条直线之间的距离为2.
    22.解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上
    ∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=
    ∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;
    (2)∵点B关于对称轴直线x=3的对称点B′为(6,1)
    ∴连接EB′交l于点P,如图所示
    设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得 解得,则函数解析式为y=﹣x+
    把x=3代入解得y=,∴点P坐标为(3,);
    (3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),
    ∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),
    求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,
    设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,
    设点Q的坐标为(a,),把点Q代入y=2x﹣14得
    =2a﹣14
    解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).
     









































    2017年山东省济宁市中考数学试卷
    一、选择题(共10小题,每小题3分,满分30分)
    1.的倒数是(  )
    A. 6 B. C. D.
    2.单项式9xmy3与单项式4x2yn是同类项,则m+n的值是(  )
    A.2 B.3 C.4 D.5
    3.下列图形是中心对称图形的是(  )

    4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是(  )
    A.1.6×10﹣4 B.1.6×10﹣5 C.1.6×10﹣6 D.16×10﹣4
    5.下列哪个几何体,它的主视图、俯视图、左视图都相同的是(  )




    A B C D2
    6.若在实数范围内有意义,则满足的条件是(  )
    A. B. C. D.
    7.计算(a2)3+a2•a3﹣a2÷a﹣3,结果是(  )
    A.2a5﹣a B.2a5﹣1a C.a5 D.a6
    8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是(  )
    A. B. C. D.
    9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为BD,则图中阴影部分的面积是(  )
    A. B. C. D.

    10.如图,A,B是半径为1的⊙O上两点,且OA⊥OB. 点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是(  )

    A. ① B.④ C.②或④ D. ①或③
    二、填空题(共5小题,每小题3分,满分15分)
    11. 分解因式:ma2+2mab+mb2= .
    12.请写出一个过(1,1),且与x轴无交点的函数表达式: .
    13.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那 么乙也共有钱48文.甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为 .
    14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为 .

    15.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是   .
    三、解答题(共7小题,共55分)
    16.解方程:

    17.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:

    (1)该班总人数是 ;
    (2)根据计算,请你补全两个统计图;
    (3)观察补全后的统计图,写出一条你发现的结论.












    18.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:
    y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.
    (1)求w与x之间的函数关系式;
    (2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?]
    (3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?























    19.如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC交AC的延长线于点E.
    (1)求证:DE是⊙O的切线;
    (2)求AE的长.





















    20.(8分)实验探究:
    (1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.
    (2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.




















    21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.
    (1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;
    (2)题(1)中求得的函数记为C1,
    ①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;
    ②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为5的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.
























    22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.
    例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.
    请你运用所学知识,结合上述材料,解决下列问题:
    在平面直角坐标系中,点M是曲线y=33x(x>0)上的任意一点,点N是x轴正半轴上的任意一点.
    (1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(3,3),点N的坐标是(3,0)时,求点P的坐标;
    (2)如图3,当点M的坐标是(3,3),点N的坐标是(2,0)时,求△MON的自相似点的坐标;
    (3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.











    2017年山东省济宁市中考数学试卷答案
    1. A.2. D.3. C.4. B.5. B.6. C7. D.8. B.9. A.10. D.
    11. m(a+b)212. y=1x(答案不唯一).13. &x+12y=48&23x+y=48.14. a+b=0.15. 318.
    16.解:去分母得:2x=x﹣2+1,
    移项合并得:x=﹣1,
    经检验x=﹣1是分式方程的解.
    17.解:(1)由题意可得:
    该班总人数是:22÷55%=40(人);
    故答案为:40;
    (2)由(1)得,第四次优秀的人数为:40×85%=34(人),
    第三次优秀率为:3240×100%=80%;
    如图所示:

    (3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.
    18.解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,
    w与x之间的函数解析式w=﹣x2+90x﹣1800;
    (2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,
    ∵﹣1<0,
    当x=45时,w有最大值,最大值是225.
    (3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,
    ∵50>48,x2=50不符合题意,舍,
    答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.
    19.(1)证明:连接OD,
    ∵D为BC的中点,
    ∴BD=CD,
    ∴∠BOD=∠BAE,
    ∴OD∥AE,
    ∵DE⊥AC,
    ∴∠ADE=90°,
    ∴∠AED=90°,
    ∴OD⊥DE,
    则DE为圆O的切线;
    (2)解:过点O作OF⊥AC,
    ∵AC=10,
    ∴AF=CF=12AC=5,
    ∵∠OFE=∠DEF=∠ODE=90°,
    ∴四边形OFED为矩形,
    ∴FE=OD=12AB,
    ∵AB=12,
    ∴FE=6,
    则AE=AF+FE=5+6=11.

    20.解:(1)猜想:∠MBN=30°.
    理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,
    ∴NA=NB,
    由折叠可知,BN=AB,
    ∴AB=BN=AN,
    ∴△ABN是等边三角形,
    ∴∠ABN=60°,
    ∴NBM=∠ABM=12∠ABN=30°.
    (2)结论:MN=12BM.
    折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.
    理由:由折叠可知△MOP≌△MNP,
    ∴MN=OM,∠OMP=∠NMP=12∠OMN=30°=∠B,
    ∠MOP=∠MNP=90°,
    ∴∠BOP=∠MOP=90°,
    ∵OP=OP,
    ∴△MOP≌△BOP,
    ∴MO=BO=12BM,
    ∴MN=12BM.

    21.解:(1)∵函数图象与x轴有两个交点,
    ∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,
    解得:m<2512且m≠0.
    ∵m为符合条件的最大整数,
    ∴m=2.
    ∴函数的解析式为y=2x2+x.
    (2)抛物线的对称轴为x=﹣b2a=﹣14.
    ∵n≤x≤﹣1<﹣14,a=2>0,
    ∴当n≤x≤﹣1时,y随x的增大而减小.
    ∴当x=n时,y=﹣3n.
    ∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).
    ∴n的值为﹣2.

    (3)∵y=2x2+x=2(x+14)2﹣18,
    ∴M(﹣14,﹣18).
    如图所示:

    当点P在OM与⊙O的交点处时,PM有最大值.
    设直线OM的解析式为y=kx,将点M的坐标代入得:﹣14k=﹣18,解得:k=12.
    ∴OM的解析式为y=12x.
    设点P的坐标为(x,12x).
    由两点间的距离公式可知:OP=x2+(12x)2=5,
    解得:x=2或x=﹣2(舍去).
    ∴点P的坐标为(2,1).
    ∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.
    22.解:(1)∵∠ONP=∠M,∠NOP=∠MON,
    ∴△NOP∽△MON,
    ∴点P是△MON的自相似点;
    过P作PD⊥x轴于D,则tan∠POD=MNON=3,
    ∴∠AON=60°,
    ∵当点M的坐标是(3,3),点N的坐标是(3,0),
    ∴∠MNO=90°,
    ∵△NOP∽△MON,
    ∴∠NPO=∠MNO=90°,
    在Rt△OPN中,OP=ONcos60°=32,
    ∴OD=OPcos60°=32×12=34,PD=OP•sin60°=32×32=34,
    ∴P(34,34);
    (2)作MH⊥x轴于H,如图3所示:
    ∵点M的坐标是(3,3),点N的坐标是(2,0),
    ∴OM=32+(3)2=23,直线OM的解析式为y=33x,ON=2,∠MOH=30°,
    分两种情况:
    ①如图3所示:∵P是△MON的相似点,
    ∴△PON∽△NOM,作PQ⊥x轴于Q,
    ∴PO=PN,OQ=12ON=1,
    ∵P的横坐标为1,
    ∴y=33×1=33,
    ∴P(1,33);
    ②如图4所示:
    由勾股定理得:MN=(3)2+12=2,
    ∵P是△MON的相似点,
    ∴△PNM∽△NOM,
    ∴PNON=MNMO,即PN2=223,
    解得:PN=233,
    即P的纵坐标为233,代入y=33得:233=33x,
    解得:x=2,
    ∴P(2,233);
    综上所述:△MON的自相似点的坐标为(1,33)或(2,233);
    (3)存在点M和点N,使△MON无自相似点,M(3,3),N(23,0);理由如下:
    ∵M(3,3),N(23,0),
    ∴OM=23=ON,∠MON=60°,
    ∴△MON是等边三角形,
    ∵点P在△MON的内部,
    ∴∠PON≠∠OMN,∠PNO≠∠MON,
    ∴存在点M和点N,使△MON无自相似点.

















    2018年山东济宁中考数学试卷
    一、选择题:共10小题,每小题3分,共30分。
    1.的值是(  )
    A.1 B.﹣1 C.3 D.﹣3
    2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是(  )
    A.1.86×107 B.186×106 C.1.86×108 D.0.186×109
    3.下列运算正确的是(  )
    A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4
    4.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是(  )
    A.50° B.60° C.80° D.100°

    第4题图 第6题图 第8题图 第9题图
    5.多项式4a﹣a3分解因式的结果是(  )
    A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
    6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是(  )
    A.(2,2) B.(1,2) C.(﹣1,2) D.(2,﹣1)
    7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是(  )
    A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
    8.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=(  )
    A.50° B.55° C.60° D.65°
    9.一个几何体的三视图如图所示,则该几何体的表面积是(  )
    A.24+2π B.16+4π C.16+8π D.16+12π
    10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是(  )
    A. B. C. D.
    二、填空题:本大题共5小题,每小题3分,共15分。
    11.若二次根式在实数范围内有意义,则x的取值范围是   .
    12.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1   y2.(填“>”“<”“=”)
    13.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件   ,使△BED与△FDE全等.

    14.如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是   km.
    15.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是   .
    三、解答题:本大题共7小题,共55分。
    16.(6分)化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)










    17.(7分)某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).
    (1)求该班的总入数,并补全条形统计图.
    (2)求D(泗水)所在扇形的圆心角度数;
    (3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.


















    18.(7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).
    (1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
    (2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
    将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.


















    19.(7分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
    村庄
    清理养鱼网箱人数/人
    清理捕鱼网箱人数/人
    总支出/元
    A
    15
    9
    57000
    B
    10
    16
    68000
    (1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
    (2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?




















    20.(8分)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
    (1)猜想DG与CF的数量关系,并证明你的结论;
    (2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.





















    21.(9分)知识背景
    当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).
    设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.
    应用举例
    已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2=4.
    解决问题
    (1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?
    (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为01.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
















    22.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).
    (1)求该抛物线的解析式;
    (2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;
    (3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

     
    2018年山东省济宁市中考数学试卷答案
    1. B. 2. C. 3. B. 4. D. 5. B.6. A.7. D. 8. C.9. D.10. C.
    11. x≥1.12.>.13. D是BC的中点.14. .15. 2﹣2.
    16.解:原式=y2﹣4﹣y2﹣5y+y+5=﹣4y+1,
    17.解:(1)该班的人数为=50人,
    则B基地的人数为50×24%=12人,
    补全图形如下:

    (2)D(泗水)所在扇形的圆心角度数为360°×=100.8°;
    (3)画树状图为:

    共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,
    所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为=.
    18.解:(1)如图点O即为所求;

    (2)设切点为C,连接OM,OC.
    ∵MN是切线,
    ∴OC⊥MN,
    ∴CM=CN=5,
    ∴OM2﹣OC2=CM2=25,
    ∴S圆环=π•OM2﹣π•OC2=25π.
    19.解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
    根据题意,得:,
    解得:,
    答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;

    (2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,
    根据题意,得:,
    解得:18≤m<20,
    ∵m为整数,
    ∴m=18或m=19,
    则分配清理人员方案有两种:
    方案一:18人清理养鱼网箱,22人清理捕鱼网箱;
    方案二:19人清理养鱼网箱,21人清理捕鱼网箱.
    20.解:(1)结论:CF=2DG.
    理由:∵四边形ABCD是正方形,
    ∴AD=BC=CD=AB,∠ADC=∠C=90°,
    ∵DE=AE,
    ∴AD=CD=2DE,
    ∵EG⊥DF,
    ∴∠DHG=90°,
    ∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,
    ∴∠CDF=∠DEG,
    ∴△DEG∽△CDF,
    ∴==,
    ∴CF=2DG(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
    由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,
    ∴EH=2DH=2,
    ∴HM==2,
    ∴DM=CN=NK==1,
    在Rt△DCK中,DK===2,
    ∴△PCD的周长的最小值为10+2.

    21.解:(1)==(x+3)+,
    ∴当x+3=时,有最小值,
    ∴x=0或﹣6(舍弃)时,有最小值=6.

    (2)设该设备平均每天的租货使用成本为w元.
    则w==+01x+200,
    ∴当=01x时,w有最小值,
    ∴x=700或﹣700(舍弃)时,w有最小值,最小值=201.4元.
    22.解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:,
    解得:,
    则该抛物线解析式为y=x2﹣2x﹣3;
    (2)设直线BC解析式为y=kx﹣3,
    把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,
    ∴直线BC解析式为y=﹣3x﹣3,
    ∴直线AM解析式为y=x+m,
    把A(3,0)代入得:1+m=0,即m=﹣1,
    ∴直线AM解析式为y=x﹣1,
    联立得:,
    解得:,
    则M(﹣,﹣);
    (3)存在以点B,C,Q,P为顶点的四边形是平行四边形,
    分两种情况考虑:
    设Q(x,0),P(m,m2﹣2m﹣3),
    当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3),
    根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3,
    解得:m=1±,x=2±,
    当m=1+时,m2﹣2m﹣3=8+2﹣2﹣2﹣3=3,即P(1+,2);
    当m=1﹣时,m2﹣2m﹣3=8﹣2﹣2+2﹣3=3,即P(1﹣,2);
    当四边形BCPQ为平行四边形时,由B(﹣1,0),C(0,﹣3),
    根据平移规律得:﹣1+m=0+x,0+m2﹣2m﹣3=﹣3+0,
    解得:m=0或2,
    当m=0时,P(0,﹣3)(舍去);当m=2时,P(2,﹣3),
    综上,存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(1+,2)或(1﹣,2)或(2,﹣3).
     



    相关试卷

    2015年山东省济宁市中考数学试卷答案: 这是一份2015年山东省济宁市中考数学试卷答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2014年至2018年山东省济宁市五年中考数学试卷与答案: 这是一份2014年至2018年山东省济宁市五年中考数学试卷与答案,共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2011年至2018年山东省济宁市八年中考数学试卷与答案: 这是一份2011年至2018年山东省济宁市八年中考数学试卷与答案,共51页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map