![福建省福州市罗源滨海学校2022-2023学年九年级上学期月考数学试题第1页](http://img-preview.51jiaoxi.com/2/3/14847513/0-1695279842659/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省福州市罗源滨海学校2022-2023学年九年级上学期月考数学试题第2页](http://img-preview.51jiaoxi.com/2/3/14847513/0-1695279842683/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省福州市罗源滨海学校2022-2023学年九年级上学期月考数学试题第3页](http://img-preview.51jiaoxi.com/2/3/14847513/0-1695279842709/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省福州市罗源滨海学校2022-2023学年九年级上学期月考数学试题
展开
这是一份福建省福州市罗源滨海学校2022-2023学年九年级上学期月考数学试题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
罗源滨海学校2022-2023学年第一学期10月适应性练习九年级数学试卷完卷时间:120分钟 满分:150分命题人:罗源滨海学校 林秋蕊 校对人:罗源滨海学校 陈梓亭学校________ 班级________ 姓名________ 座号________一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确选项)1.将数字“69”旋转180°,得到的数字是( )A.96 B.69 C.66 D.992.一元二次方程的解是( )A. B. C., D.,3.用配方法将二次三项式变形,结果是( )A. B. C. D.4.如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、在同一条直线上,则三角板ABC旋转的角度是( )A.60° B.90° C.120° D.150°5.下列一元二次方程中,没有实数根的是( )A. B. C. D.6.已知关于x的一元二次方程一个根为,则m的值是( )A.2 B. C.0 D.7.把抛物线向右平移1个单位,再向下平移2个单位,得到的抛物线解析式是( )A. B. C. D.8.把直线绕着原点顺时针旋转90°,得到的直线解析式是( )A. B. C. D.9.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是,汽车刹车后到停下来前进的距离是( )A. B. C. D.10.已知,是抛物线上的点,下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则二、填空题(共6小题,每题4分,满分24分)11.点关于原点对称的点的坐标是______.12.已知抛物线,则此抛物线的对称轴是______.13.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若,将三角板绕原点O顺时针旋转75°,则点A的对应点的坐标为______.14.已知二次函数自变量x与函数值y之间满足下列数量关系:x0123y3003则代数式的值是______.15.如图,在一面靠墙(墙长不限)的空地上用长为24米的篱笆围成中间隔有两道篱笆的矩形鸡场,则所围鸡场最大面积为______平方米.16.已知,且,若,则m的取值范围是______.三、解答题(共9小题,满分86分)17.(6分)解一元二次方程:.18.(6分)已知关于x的方程有两个相等的实数根,求m的值.19.(8分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求这种药品下降的百分率.20.(8分)已知二次函数.(1)完成下表,并平面直角坐标中画出这个函数的图象;x y (2)结合图象回答:①当时,y随x的增大而______;(填“增大或减小)②当时,自变量x的取值范围是______.21.(10分)如图,抛物线与x轴交于、,与y轴交于点C,(1)求抛物线的解析式;(2)若点,点P是抛物线上的动点,且是以CD为底的等腰三角形,求点P的坐标.22.(11分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且,将绕点D按逆时针方向旋转90°得到.(1)画出旋转后的;(2)求证:;(3)当时,求EF的长.23.(12分)如图,抛物线形拱桥,当拱顶离水面时,水面宽.(1)请建立适当的平面直角坐标系,并求出抛物线的顶点坐标;(2)当水面下降,请求出此时水面的宽度是多少?(3)设当水面宽为w,此时拱顶离水面h,请求出w与h的数量关系式.24.(12分)如图,正方形ABCD的边长为,点P是边BC所在直线上的一个动点,连接PA,将线段PA绕点P顺时针旋转60°得到线段PF,PF与边CD相交于点E.(1)当点P在BC边上运动时,①如图1,当,求PE的长;②如图2,点F与点E重合,求CE的长.(2)如图3,以点B为坐标原点建立平面直角坐标系,点P在边BC所在直线(即x轴)上运动过程中,点F运动所形成的图象是一条直线,①求点F运动所形成的直线解析式;②请直接写出线段BF的最小值.25.(13分)已知二次函数(m,n为常数).(1)当,时,请判断抛物线与x轴的交点情况,并说明理由;(2)当时,①请求出抛物线的顶点P的坐标(用含m的式子表示);并直接写出点P所在的函数图象解析式;②若在自变量x满足的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.罗源滨海学校2022-2023学年第一学期10月适应性练习数学参考答案一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确选项)1-5:BCADD 6-10:BABDC二、填空题(共6小题,每题4分,满分24分)11. 12.y轴或直线 13.14. 15.36 16.三、解答题(共9小题,满分86分)17.解:依题意得:,,,,,∴,.18.解:依题意得:,即,解得:,.19.解:设平均每次降价的百分率为x.根据题意列方程得:,解得,(不符合题意,舍去).答:这两次降价的百分率是10%.20.(1)填表(全对才给分)描点与画图(2)①减小 ②21.解:(1)依题意得:,解得:,∴(2)依题意得:,∵是等腰三角形,∴点P在线段CD的垂直平分线上,如图,线段CD的垂直平分线为:直线,解方程组:,即:,解得:,所以,点P的坐标为,,22.(1)画图(2)证明:∵四边形ABCD是正方形,∴,∵绕点D逆时针旋转90°得到,∴,,,∴,∴F,C,M三点共线,∵,∴,∵,,∴,∴;(3)解:由旋转得,∴设,则,∵正方形ABCD中,,∴,∴解得,即.23.解法1:(1)如图建立平面直角坐标系,此时抛物线的顶点坐标为.(2)设抛物线的解析式为:,依题意可得抛物线过点,把代入中得:,解得:,∴抛物线的解析式为:,当水面下降时,水面的纵坐标为,即,当时,,,∴此时水面宽度为,(3)依题意可得抛物线过点或,把或任意一点代入中,得:,∴与h的数量关系式为:.(或)解法2:(1)如图建立平面直角坐标系,此时抛物线的顶点坐标为.(2)∵抛物线的顶点坐标为,∴设抛物线的解析式为:,依题意可得抛物线过点,把代入中得:,解得:,∴抛物线的解析式为:,当水面下降时,水面的纵坐标为,即,当时,,,∴此时水面宽度为,(3)依题意可得抛物线过点或,把或任意一点代入中,得:,∴w与h的数量关系式为:(或)24.解(1)①如图1∵四边形ABCD是正方形,∴,又∵,∴在中,,∴,则∵,,∴,则,∴在中,.②如图2,连接AE∵,∴为等边三角形,则,∵四边形ABCD是正方形,∴,则,∴,则,设,在中,,∴在中,,∴整理得:解得:,(舍去)∴(2)①∵点F运动所形成的图象是一条直线,∴只需求出此直线所经过的两点坐标即可,如图3,当点在x轴上时,为等边三角形,则,∵,∴,,则,且,由勾股定理得:,所以点的坐标为当点在y轴上时,∵为等边三角形,,∴,所以点的坐标为,设直线的解析式为.则,解得所以直线的解析式为.②BF的最小值为25.解:(1)当,时,二次函数的解析式是:.此时抛物线与x轴有两个不同的交点理由如下:令,即∴抛物线与x轴有两个不同的交点(2)当时,二次函数的解析式是:.所以,抛物线的顶点坐标为,点P所在的函数图象的解析式是.(3)当时,二次函数的解析式是:,图象的开口向上,对称轴为直线:.①若,即,在的情况下,y随着x的增大而增大当时,值最小,解得:,(不合题意舍去)②若,即当时,的值最小,,解得:(不合题意舍去),(不合题意舍去)③若,即,在的情况下,y随x的增大而减小当时,的值最小,解得:(不合题意舍去),综上所述:或.此时,二次函数的解析式是:或.
相关试卷
这是一份福建省福州市三校2023-2024学年九年级上学期月考数学试题,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省福州市金港湾实验学校2023—2024上学期10月月考九年级数学试题,共5页。
这是一份2022-2023学年福建省福州市罗源一中九年级(下)期中数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)