《平行四边形的对角线互相平分》导学案-八年级下册数学人教版
展开18.1.1平行四边形的性质(2)
学习目标:
1、掌握平行四边形对角线互相平分的性质.
2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
3、培养学生的推理论证能力和逻辑思维能力.
学习重点:平行四边形对角线互相平分的性质,以及性质的应用.
学习难点:综合运用平行四边形的性质进行有关的论证和计算.
学习过程
一、复习巩固
平行四边形的定义:
表示方法:
性质:
二、新知讲解
(1)【探究】:如图,把两张完全相同的平行四边形纸片叠合在一起,在它们的中心O 钉一个图钉,将一个平行四边形绕O旋转180°,你
发现了什么?
由上面的探究你能得到什么结论:
平行四边形对角线 .
(2)用以前学过的知识证明“平行四边形的对角线互相平分”。
(3)“平行四边形的对角线互相平分”的符号语言:
三、巩固练习
第一组
1、如图,在 ABCD中, 对角线AC﹑BD相交于点O,且AC+BD=20,
△AOB的周长等于15,则CD=______
2、如图,平行四边形ABCD中,AC与BD交于点O,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:OE=OF
(第一题) (第二题)
第二组
1、如图所示,在平行四边形ABCD中,AC与BD相交与点O,
如果AC=16,BD=10,AB=x,则x取值范围是 _____
若AB=12, BC=6,则OA的取值范围是________.
2、若平行四边形的一边长为5,则它的两条对角线长可以是( )
A.12和2 B.3和4 C.4和6 D.4和8
3、□ABCD的对角线AC、BD相交于点O, AC =16㎝,BD =12㎝,
BC =10㎝,则□ABCD 的周长是_____,□ ABCD的面积是_____。
4、(1)□ABCD的对角线AC与BD相交于O,直线EF过点 O与 AB、CD分别相交于E 、F,试探究OE与OF的大小关系?并说明理由。
(2)在上述问题中,若将直线EF绕点O旋转与□ABCD的一组对边交于E、F两点,上述结论是否仍然成立?
(第一题) (第四题)
四、课堂小结
通过本节课的学习,你有什么收获?
五、实际应用
一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的:
当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么?
六、作业
同步训练28、29页