人教版八年级上册12.2 三角形全等的判定优秀同步训练题
展开一、选择题
1.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )
A.带①去 B.带②去 C.带③去 D.带①和②去
2.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )
A.BC=FD,AC=ED B.∠A=∠DEF,AC=ED
C.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD
3.下列判断中错误的是( )
A.有两角和一边对应相等的两个三角形全等
B.有两边和一角对应相等的两个三角形全等
C.有两边和其中一边上的中线对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
4.如图,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是( )
A.△ABC≌△ADE B.△ABO≌△ADO C.△AEO≌△ACO D.△ABC≌△ADO
5.要测量圆形工件的外径,工人师傅设计了如右图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则这个工件的外径必是CD之长了,其中的依据是全等三角形的判定条件( )
A.ASA B.AAS C.SAS D.SSS
6.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是( )
A.SAS B.ASA C.SSS D.HL
7.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:
①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,
对于上述的两个判断,下列说法正确的是( )
A.①正确,②错误 B.①错误,②正确 C.①,②都错误 D.①,②都正确
8.下图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.△ACF B.△ADE C.△ABC D.△BCF
9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是( )
A.1 B.2 C.3 D.4
10.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )
A.5<AD<7 B.1<AD<6 C.2<AD<12 D.2<AD<5
11.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.
以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
12.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )
A.② B.①②③ C.①②④ D.①②③④
二、填空题
13.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得到△AOD≌△COB,从而可以得到AD= .
14.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明 得到AB=DC,再利用 证明△AOB≌ 得到OB=OC.
15.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 个.
16.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .
17.教室里有几盆花,如图①,要想测量这几盆花两旁的A,B两点间的距离不方便,因此,选点A,B都能到达的一点O,如图②,连接BO并延长BO到点C,使CO=BO,连接AO并延长AO到点D,使DO=AO.那么C,D两点间的距离就是A,B两点间的距离.
理由:在△COD和△BOA中,
所以△COD≌△BOA( ).
所以CD= .
所以只要测出C,D两点间的距离就可知A,B两点间的距离.
18.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2= .
三、解答题
19.如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD,E,F分别是BC,BD的中点,连结AE,AF.求证:AE=AF.
20.如图,在△ABC和△DAE中,∠DAE=∠BAC,AB=AE,AD=AC,连接BD、CE.
求证:BD=CE.
21.小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?
22.如图,已知在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH上的一点,且DH=HC,连接BD并延长BD交AC于点E,连接EH.
(1)请补全图形;
(2)求证:△ABE是直角三角形;
(3)若BE=a,CE=b,求出S△CEH:S△BEH的值(用含有a,b的代数式表示)
23.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图①,求证:AE=BD;
(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.
24.如图,在△ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.
25.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E.试猜想CE与BD的数量关系,并说明理由.
答案
1.C
2.C
3.B
4.B
5.C.
6.B
7.D
8.B.
9.C.
10.B
11.D
12.C
13.答案为:∠COB,SAS,CB.
14.答案为:△ABC≌△DCB,AAS,△DOC.
15.答案为:4.
16.答案为:135°.
17.答案为:SAS;BA
18.答案为:45°
19.证明:∵BC=BD,E,F分别是BC,BD的中点,
∴BE=BF.
在△ABE和△ABF中,
∵eq \b\lc\{(\a\vs4\al\c1(AB=AB,,∠ABE=∠ABF,,BE=BF,))
∴△ABE≌△ABF(SAS),
∴AE=AF.
20.证明:∵∠DAE=∠BAC,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
即∠BAD=∠CAE,
在△ABD和△AEC中,
,
∴△ABD≌△AEC(SAS),
∴BD=CE.
21.解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,
∴∠DCP=∠APB=54°,
在△CPD和△PAB中
∵,
∴△CPD≌△PAB(ASA),
∴DP=AB,
∵DB=36,PB=10,
∴AB=36﹣10=26(m),
答:楼高AB是26米.
22.解:(1)图形如图所示;
(2)证明:∵AH⊥BC,
∴∠BHD=∠AEH=90°,
∵∠ABC=45°,
∴∠BAH∠ABH=45°,
∴AH=BH,
在△BHD和△AHC中,
,
∴△BHD≌△AHC(SAS),
∴∠HBD=∠CAH,
∵∠HBD+∠BDH=90°,∠BDH=∠ADE,
∴∠ADE+∠DAE=90°,
∴∠AED=90°,
∴△ABE是直角三角形.
(3)作HM⊥BE于M,HN⊥AC于N.
∵△BHD≌△AHC,
∴HM=HN(全等三角形对应边上的高相等),
∴==.
23.解:(1)∵△ACB和△DCE都是等腰直角三角形,
∠ACB=∠DCE=90°,
∴AC=BC,DC=EC,
∴∠ACB+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
在△ACE与△BCD中,
eq \b\lc\{(\a\vs4\al\c1(AC=BC,,∠ACE=∠BCD,,CE=CD,))
∴△ACE≌△BCD(SAS),
∴AE=BD;
(2)∵AC=DC,
∴AC=CD=EC=CB,
△ACB≌△DCE(SAS);
由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,
∵∠AEC=∠BDC,∠EMC=∠DMO,
∴∠DOM=90°.
∵∠AEC=∠CAE=∠CBD,
∴△ECM≌△BCN(ASA),
∴CM=CN,
∴DM=AN,
△AON≌△DOM(AAS),
∵DE=AB,AO=DO,
∴Rt△AOB≌Rt△DOE(HL).
24.解:∵BE,CF分别是AC,AB两条边上的高,
∴∠ABD+∠BAC=90°,∠GCA+∠BAC=90°,
∴∠GCA=∠ABD,
在△GCA和△ABD中,
∵GC=AB,∠GCA=∠ABD,CA=BD,
∴△GCA≌△ABD,
∴AG=AD
25.解:CE=eq \f(1,2)BD.理由如下:延长CE交BA的延长线于点F,如解图.
∵BE平分∠ABC,
∴∠1=∠2.
∵CE⊥BD,
∴∠BEC=∠BEF=90°.
又∵BE=BE,
∴△BEC≌△BEF(ASA),
∴CE=FE=eq \f(1,2)CF.
∵∠1+∠4=∠3+∠5=90°,∠4=∠5,
∴∠1=∠3.
又∵∠BAD=∠CAF=90°,AB=AC,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∴CE=eq \f(1,2)CF=eq \f(1,2)BD.
人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定课堂检测: 这是一份人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定课堂检测,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版八年级上册12.2 三角形全等的判定同步练习题: 这是一份人教版八年级上册12.2 三角形全等的判定同步练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定复习练习题: 这是一份人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定复习练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。