初中数学人教版八年级上册12.3 角的平分线的性质精品课堂检测
展开一、选择题
1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )
A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD
2.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A.PN<3 B.PN>3 C.PN≥3 D.PN≤3
3.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )
A.3cm B.4cm C.5cm D.7 cm
4.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以M、N为圆心,大于eq \f(1,2)MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b-1),则a和b的数量关系为( )
A.6a-2b=1 B.6a+2b=1 C.6a-b=1 D.6a+b=1
5.有一块三角形的草坪△ABC,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在( )
A.△ABC三边的垂直平分线的交点
B.△ABC三条角平分线的交点
C.△ABC三条中线的交点
D.△ABC三条高所在直线的交点
6.下列命题中真命题是( )
A.三角形按边可分为不等边三角形,等腰三角形和等边三角形
B.等腰三角形任一个内角都有可能是钝角或直角
C.三角形的一个外角大于任何一个内角
D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等
7.如图,已知AB=AC,AE=AF,BE与CF交于点D.
则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.
其中正确的是( )
A.① B.② C.①和② D.①②③
8.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.
下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.
其中正确的有( ) 个.
A.1 B.2 C.3 D.4
9.如图,已知点P到AE、AD、BC的距离相等,下列说法:
①点P在∠BAC的平分线上;
②点P在∠CBE的平分线上;
③点P在∠BCD的平分线上;
④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.
其中正确的是( )
A.①②③④ B.①②③ C.④ D.②③
10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8 B.6 C.4 D.2
11.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP.
有以下结论:
①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBD+S△PCE=S△PBC.
其中正确的个数是( )
A.2 B.3 C.4 D.5
12.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.
下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.
其中正确的有( ) 个.
A.1 B.2 C.3 D.4
二、填空题
13.如图,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,S△ABC=14cm2,则DE的长是 cm.
14.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是________.
15.如图所示,AO为∠A的平分线,OE⊥AC于E,且OE=2,则点O到AB的距离等于 .
16.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为 .
17.直线 l1、l2、l3 表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有 处.
18.如图,已知△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别等于 .
三、解答题
19.(1)如图1,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A的度数.
(2)利用三角板也能画出一个角的平分线,画法如下:
①利用三角板在∠AOB的两边上分别取OM=ON;
②分别过点M、N画OM、ON的垂线,交点为P;
③画射线OP,所以射线OP为∠AOB的角平分线.
请你评判这种作法的正确性,并加以证明.
20.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.
21.如图,在Rt△ABC的场地上,∠B=90°,AB=BC,∠CAB的平分线AE交BC于点E.甲、乙两人同时从A处出发,以相同的速度分别沿AC和A→B→E线路前进,甲的目的地为C,乙的目的地为E.请你判断一下,甲、乙两人谁先到达各自的目的地?并说明理由.
22.如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=20,过O作OD⊥BC于D点,且OD=3,求△ABC的面积.
23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.说明:
(1)CD=EB;
(2)AB=AF+2EB.
24.如图,△ABC和△AED为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,连接BE、CD交于点O,连接AO.
求证:(1)△BAE≌△CAD;
(2)OA平分∠BOD.
答案
1.B
2.C.
3.D.
4.B
5.B
6.D.
7.D.
8.C
9.A
10.C.
11.C
12.C.
13.答案为:2.
14.答案为:3.
15.答案为:2.
16.答案为:6.
17.答案为:4.
18.答案为:2,2,2.
19.解:(1)∵∠CGF=70°,
∴∠AGE=70°,
∵∠B=45°,∠F=30°,
∴∠AEF=∠B+∠F=75°,
∴∠A=180°﹣75°﹣70°=35°;
(2)证明:这种作法的正确.
理由如下:由作图得∠PMO=∠PNO=90°,
在Rt△PMO和Rt△PNO中
,
∴Rt△PMO≌Rt△PNO,
∴∠POM=∠PON,
即射线OP为∠AOB的角平分线.
20.证明:连接DB.
∵点D在BC的垂直平分线上,
∴DB=DC;
∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,
∴DE=DF;
∵∠DFC=∠DEB=90°,
在Rt△DCF和Rt△DBE中,
DB=DC,DE=DF.
∴Rt△DCF≌Rt△DBE(HL),
∴CF=BE(全等三角形的对应边相等).
21.解:同时到达.理由如下:
过点E作EF⊥AC于点F.
∵AB=BC,∠B=90°,
∴∠C=eq \f(180°-∠B,2)=45°.
∵EF⊥AC,
∴∠EFC=90°,
∴∠CEF=90°-∠C=45°=∠C,
∴EF=CF.
又∵AE平分∠CAB,
∴EF=EB.
易证得△AEF≌△AEB,
得AF=AB,
可知AB+BE=AF+CF=AC,
故同时到达.
22.解:如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.
∵点O是∠ABC,∠ACB平分线的交点,
∴OE=OD,OF=OD,即OE=OF=OD=3,
∴S△ABC=S△ABO+S△BCO+S△ACO=eq \f(1,2)AB•OE+eq \f(1,2)BC•OD+eq \f(1,2)AC•OF
=eq \f(1,2)×2×(AB+BC+AC)=eq \f(1,2)×3×20=30.
23.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CFD和Rt△EBD中,
,
∴Rt△CFD≌Rt△EBD(HL),
∴CD=EB;
(2)在△ACD和△AED中,
,
∴△ACD≌△AED(AAS),
∴AC=AE,
∴AB=AE+EB=AC+EB=AF+FC+EB=AF+2EB.
24.证明:(1)过点A分别作AF⊥BE于F,AG⊥CD于G.如图所示:
∵∠BAC=∠DAE,
∴∠BAE=∠CAD,
在△BAE和△CAD中,
,
∴△BAE≌△CAD(SAS),
(2)连接AO并延长交CE为点H,
∵△BAE≌△CAD,
∴BE=CD,
∴AF=AG,
∵AF⊥BE于F,AG⊥CD于G,
∴OA平分∠BOD,
∴∠AOD=∠AOB,
∵∠COH=∠AOD,∠EOH=∠AOB,
∴∠COH=∠EOH.
∴OA平分∠BOD.
人教版八年级上册12.3 角的平分线的性质同步测试题: 这是一份人教版八年级上册12.3 角的平分线的性质同步测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中人教版12.3 角的平分线的性质练习: 这是一份初中人教版12.3 角的平分线的性质练习,共6页。试卷主要包含了 到三角形三边距离相等的点是, 已知, 【答案】15;等内容,欢迎下载使用。
初中人教版12.3 角的平分线的性质课后练习题: 这是一份初中人教版12.3 角的平分线的性质课后练习题,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。