山东省菏泽市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
展开这是一份山东省菏泽市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共35页。试卷主要包含了解不等式组,,其对称轴为x=﹣,,连接AC、BC,两点,交y轴于点C等内容,欢迎下载使用。
山东省菏泽市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.分式方程的应用(共1小题)
1.(2022•菏泽)某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.
(1)篮球、排球的进价分别为每个多少元?
(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?
二.解一元一次不等式组(共1小题)
2.(2023•菏泽)解不等式组.
三.反比例函数与一次函数的交点问题(共2小题)
3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).
(1)求反比例函数y=和直线OC的表达式;
(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.
4.(2021•菏泽)如图,在平面直角坐标系中,矩形OABC的两边OC、OA分别在坐标轴上,且OA=2,OC=4,连接OB.反比例函数y=(x>0)的图象经过线段OB的中点D,并与AB、BC分别交于点E、F.一次函数y=k2x+b的图象经过E、F两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点P是x轴上一动点,当PE+PF的值最小时,点P的坐标为 .
四.二次函数综合题(共3小题)
5.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.
(1)求抛物线的表达式;
(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;
(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.
6.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
(1)求抛物线的表达式;
(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
7.(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.
(1)求该抛物线的表达式;
(2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;
(3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).
五.三角形综合题(共1小题)
8.(2022•菏泽)如图1,在△ABC中,∠ABC=45°,AD⊥BC于点D,在DA上取点E,使DE=DC,连接BE、CE.
(1)直接写出CE与AB的位置关系;
(2)如图2,将△BED绕点D旋转,得到△B′E′D(点B′、E′分别与点B、E对应),连接CE′、AB′,在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是否一致?请说明理由;
(3)如图3,当△BED绕点D顺时针旋转30°时,射线CE′与AD、AB′分别交于点G、F,若CG=FG,DC=,求AB′的长.
六.平行四边形的性质(共1小题)
9.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.
七.四边形综合题(共1小题)
10.(2021•菏泽)在矩形ABCD中,BC=CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.
(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;
(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;
(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.
八.圆的综合题(共1小题)
11.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.
(1)求证:BC=DE;
(2)P是上一点,AC=6,BF=2,求tan∠BPC;
(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.
九.相似形综合题(共1小题)
12.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.
【问题解决】
(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.
【类比迁移】
(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.
一十.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).
一十一.频数(率)分布直方图(共1小题)
14.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.
根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:
(1)A组数据的中位数是 ,众数是 ;在统计图中B组所对应的扇形圆心角是 度;
(2)补全学生心率频数分布直方图;
(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?
一十二.列表法与树状图法(共1小题)
15.(2021•菏泽)2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)合格等级所占百分比为 %;不合格等级所对应的扇形圆心角为 度;
(3)从所抽取的优秀等级的学生A、B、C…中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求出恰好抽到A、B两位同学的概率.
山东省菏泽市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.分式方程的应用(共1小题)
1.(2022•菏泽)某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.
(1)篮球、排球的进价分别为每个多少元?
(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?
【答案】(1)篮球的进价为每个120元,排球的进价为每个80元;
(2)最多可以购买100个篮球.
【解答】解:(1)设排球的进价为每个x元,则篮球的进价为每个1.5x元,
依题意得:﹣=10,
解得:x=80,
经检验,x=80是方程的解,
1.5x=1.5×80=120.
答:篮球的进价为每个120元,排球的进价为每个80元;
(2)设购买m个篮球,则购买(300﹣m)个排球,
依题意得:120m+80(300﹣m)≤28000,
解得:m≤100,
答:最多可以购买100个篮球.
二.解一元一次不等式组(共1小题)
2.(2023•菏泽)解不等式组.
【答案】x≤.
【解答】解:,
解不等式①,得:x<2.5,
解不等式②,得:x≤,
∴该不等式组的解集是x≤.
三.反比例函数与一次函数的交点问题(共2小题)
3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).
(1)求反比例函数y=和直线OC的表达式;
(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.
【答案】(1);;
(2)或(2,2).
【解答】解:(1)如图,过点C作CD⊥x轴于点D,
∴∠BDC=90°,
∵∠AOB=90°,
∴∠BDC=∠AOB,
∵BC⊥AB,
∴∠ABC=90°,
∴∠ABO+∠CBD=90°,
∵∠AOB=90°,
∴∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
∴△CBD∽△BAO,
∴,
∵A(0,4),B(2,0),C(a,1),
∴AO=4,BO=2,CD=1,
∴,
∴BD=2,
∴OD=BO+BD=4,
∴a=4,
∴点C的坐标是(4,1),
∵反比例函数过点C,
∴k=4×1=4,
∴反比例函数的解析式为;
设直线OC的解析式为y=mx,
∵其图象经过点C(4,1),
∴4m=1,
解得,
∴直线OC的解析式为;
(2)将直线OC向上平移个单位,得到直线l,
∴直线l的解析式为,
由题意得,,
解得,,
∴直线l与反比例函数图象的交点坐标为或(2,2).
4.(2021•菏泽)如图,在平面直角坐标系中,矩形OABC的两边OC、OA分别在坐标轴上,且OA=2,OC=4,连接OB.反比例函数y=(x>0)的图象经过线段OB的中点D,并与AB、BC分别交于点E、F.一次函数y=k2x+b的图象经过E、F两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点P是x轴上一动点,当PE+PF的值最小时,点P的坐标为 (,0) .
【答案】见试题解答内容
【解答】解:(1)∵四边形OABC为矩形,OA=BC=2,OC=4,
∴B(4,2).
由中点坐标公式可得点D坐标为(2,1),
∵反比例函数y=(x>0)的图象经过线段OB的中点D,
∴k1=xy=2×1=2,
故反比例函数表达式为y=.
令y=2,则x=1;令x=4,则y=.
故点E坐标为(1,2),F(4,).
设直线EF的解析式为y=k2x+b,代入E、F坐标得:
,解得:.
故一次函数的解析式为y=.
(2)作点E关于x轴的对称点E',连接E'F交x轴于点P,则此时PE+PF最小.如图.
由E坐标可得对称点E'(1,﹣2),
设直线E'F的解析式为y=mx+n,代入点E'、F坐标,得:
,解得:.
则直线E'F的解析式为y=,
令y=0,则x=.
∴点P坐标为(,0).
故答案为:(,0).
四.二次函数综合题(共3小题)
5.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.
(1)求抛物线的表达式;
(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;
(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.
【答案】(1)y=﹣x2﹣3x+4;
(2);
(3).
【解答】解:(1)抛物线与y轴交于点C(0,4),
∴c=4,
∵对称轴为 ,
∴,b=﹣3,
∴抛物线的解析式为 y=﹣x2﹣3x+4;
(2)如图,过 B'作x轴的垂线,垂足为H,
令﹣x2﹣3x+4=0,
解得:x1=1,x2=﹣4,
∴A(﹣4,0),B(1,0),
∴AB=1﹣(﹣4)=5,
由翻折可得AB′=AB=5,
∵对称轴为 ,
∴,
∴AB'=AB=5=2AH,
∴∠AB'H=30°,∠B'AB=60°,
∴,
在Rt△AOD中,,
∴;
(3)设BC所在直线的解析式为 y1=k1x+b1,
把B、C坐标代入得:,
解得:,
∴y1=﹣4x+4,
∵OA=OC,
∴∠CAO=45°,
∵∠AEB=90°,
∴直线PE与x轴所成夹角为 45°,
设 P(m,﹣m2﹣3m+4),
设PE所在直线的解析式为:y2=﹣x+b2,
把点P代入得 ,
∴,
令 y1=y2,则﹣4x+4=﹣x﹣m2﹣2m+4,
解得 ,
∴FG=,
,
∴,
∵点P在直线AC上方,
∴﹣4<m<0,
∴当m=时,FG+FP的最大值为.
6.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
(1)求抛物线的表达式;
(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
【答案】(1)y=﹣+x+4;(2)D(﹣8,8),24;(3)(6,4)或(,﹣).
【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),
∴,
解得:.
∴抛物线的表达式为y=﹣+x+4;
(2)点D的坐标为(﹣8,8),理由:
将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,
过点D作DE⊥x轴于点E,
∵A(﹣2,0)、B(8,0),C(0,4),
∴OA=2,OB=8,OC=4.
∵,,
∴.
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠ACO=∠CBO.
∵∠CBO+∠OCB=90°,
∴∠ACO+∠OCB=90°,
∴∠ACB=90°,
∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,
∴点D,C,B三点在一条直线上.
由轴对称的性质得:BC=CD,AB=AD.
∵OC⊥AB,DE⊥AB,
∴DE∥OC,
∴OC为△BDE的中位线,
∴OE=OB=8,DE=2OC=8,
∴D(﹣8,8);
由题意得:S△ACD=S△ABC,
∴四边形OADC的面积=S△OAC+S△ADC
=S△OAC+S△ABC
=OC•OA+AB•OC
=4×2+10×4
=4+20
=24;
(3)①当点P在BC上方时,如图,
∵∠PCB=∠ABC,
∴PC∥AB,
∴点C,P的纵坐标相等,
∴点P的纵坐标为4,
令y=4,则﹣+x+4=4,
解得:x=0或x=6,
∴P(6,4);
②当点P在BC下方时,如图,
设PC交x轴于点H,
∵∠PCB=∠ABC,
∴HC=HB.
设HB=HC=m,
∴OH=OB﹣HB=8﹣m,
在Rt△COH中,
∵OC2+OH2=CH2,
∴42+(8﹣m)2=m2,
解得:m=5,
∴OH=3,
∴H(3,0).
设直线PC的解析式为y=kx+n,
∴,
解得:.
∴y=﹣x+4.
∴,
解得:,.
∴P(,﹣).
综上,点P的坐标为(6,4)或(,﹣).
7.(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.
(1)求该抛物线的表达式;
(2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;
(3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).
【答案】见试题解答内容
【解答】解:(1)由题意得:,解得,
故抛物线的表达式为y=x2﹣3x﹣4;
(2)由抛物线的表达式知,点C(0,﹣4),
设点P的坐标为(m,m2﹣3m﹣4),
设直线PB的表达式为y=kx+t,
则,解得,
∵CQ∥BP,
故设直线CQ的表达式为y=(m+1)x+p,
该直线过点C(0,﹣4),即p=﹣4,
故直线CQ的表达式为y=(m+1)x﹣4,
令y=(m+1)x﹣4=0,解得x=,即点Q的坐标为(,0),
则BQ=4﹣=,
设△PBQ面积为S,
则S=×BQ×(﹣yP)=﹣××(m2﹣3m﹣4)=﹣2m2+8m,
∵﹣2<0,故S有最大值,
当m=2时,△PBQ面积为8,
此时点P的坐标为(2,﹣6);
(3)存在,理由:
将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,即点A过该点,即抛物线向右平移了+1=个单位,
则函数的对称轴也平移了个单位,即平移后的抛物线的对称轴为直线x=+=3,故设点E的坐标为(3,m),
设点F(s,t),
①当AP是边时,
则点A向右平移3个单位向下平移6个单位得到点P,
同样点F(E)向右平移3个单位向下平移6个单位得到点E(F)且AE=PF(AF=PE),
则或,
解得或,
故点F的坐标为(0,)或(6,﹣4);
②当AP是对角线时,
由中点坐标公式和AP=EF得:,
解得或,
故点F的坐标为(﹣2,﹣3﹣)或(﹣2,﹣3);
综上,点F的坐标为(0,)或(6,﹣4)或(﹣2,﹣3﹣)或(﹣2,﹣3).
五.三角形综合题(共1小题)
8.(2022•菏泽)如图1,在△ABC中,∠ABC=45°,AD⊥BC于点D,在DA上取点E,使DE=DC,连接BE、CE.
(1)直接写出CE与AB的位置关系;
(2)如图2,将△BED绕点D旋转,得到△B′E′D(点B′、E′分别与点B、E对应),连接CE′、AB′,在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是否一致?请说明理由;
(3)如图3,当△BED绕点D顺时针旋转30°时,射线CE′与AD、AB′分别交于点G、F,若CG=FG,DC=,求AB′的长.
【答案】(1)CE⊥AB;
(2)在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是一致,理由见解析过程;
(3)5.
【解答】解:(1)如图1,延长CE交AB于H,
∵∠ABC=45°,AD⊥BC,
∴∠ADC=∠ADB=90°,∠ABC=∠DAB=45°,
∵DE=CD,
∴∠DCE=∠DEC=∠AEH=45°,
∴∠BHC=∠BAD+∠AEH=90°,
∴CE⊥AB;
(2)在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是一致,
理由如下:如图2,延长CE'交AB'于H,
由旋转可得:CD=DE',B'D=AD,
∵∠ADC=∠ADB=90°,
∴∠CDE'=∠ADB',
又∵=1,
∴△ADB'∽△CDE',
∴∠DAB'=∠DCE',
∵∠DCE'+∠DGC=90°,
∴∠DAB'+∠AGH=90°,
∴∠AHC=90°,
∴CE'⊥AB';
(3)如图3,过点D作DH⊥AB'于点H,
∵△BED绕点D顺时针旋转30°,
∴∠BDB'=30°,B'D=BD=AD,
∴∠ADB'=120°,∠DAB'=∠AB'D=30°,
∵DH⊥AB',
∴AD=2DH,AH=DH=B'H,
∴AB'=AD,
由(2)可知:△ADB'∽△CDE',
∴∠DCE'=∠DAB'=30°,
∵AD⊥BC,CD=,
∴DG=1,CG=2DG=2,
∴CG=FG=2,
∵∠DAB'=30°,CE'⊥AB',
∴AG=2GF=4,
∴AD=AG+DG=4+1=5,
∴AB'=AD=5.
六.平行四边形的性质(共1小题)
9.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.
【答案】证明见解析.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,∠BAD=∠BCD,
∵AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F,
∴∠BAE=∠FCD,
在△ABE与△CDF中,
,
∴△ABE≌△CDF(ASA),
∴AE=CF.
七.四边形综合题(共1小题)
10.(2021•菏泽)在矩形ABCD中,BC=CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.
(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;
(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;
(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.
【答案】见试题解答内容
【解答】(1)证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEF=∠EFB,
由翻折变换可知,∠DEF=∠PEF,
∴∠PEF=∠PFE,
∴PE=PF.
(2)证明:如图2中,连接AC交EF于O,连接PM,PO.
∵AE∥CF,
∴∠EAO=∠FCO,
∵AE=CF,∠AOE=∠COF,
∴△AEO≌△CFO(AAS),
∴OE=OF,
∵PE=PF,
∴PO平分∠EPF,
∵AD=BC,AE=FC,
∴ED=BF,
由折叠的性质可知ED=EH,所以BF=EH,
∴PE﹣EH=PF﹣BF,
∴PB=PH,
∵∠PHM=∠PBM=90°,PM=PM,
∴Rt△PMH≌Rt△PMB(HL),
∴PM平分∠EPF,
∴P.M,O共线,
∵PO⊥EF,OE=OF,
∴点M在线段EF的垂直平分线上.
(3)如图3中,由题意,点E由点A移动到AD中点的过程中,点G运动的路径是图中弧BC.
在Rt△BCD中,tan∠CBD==,
∴∠CBD=30°,
∴∠ABO=∠OAB=60°,
∴△AOB是等边三角形,
∴OA=OD=OB=OC=AB=5,∠BOC=120°,
∴点G运动的路径的长==π.
故答案为:π.
八.圆的综合题(共1小题)
11.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.
(1)求证:BC=DE;
(2)P是上一点,AC=6,BF=2,求tan∠BPC;
(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.
【答案】(1)见解答;
(2)tan∠BPC=;
(3)7.
【解答】(1)证明:∵D是 的中点,
∴,
∵DE⊥AB且AB为⊙O的直径,
∴,
∴,
∴BC=DE;
(2)解:连接OD,
∵,
∴∠CAB=∠DOB,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵DE⊥AB,
∴∠DFO=90°,
∴△ACB∽△OFD,
∴,
设⊙O的半径为r,
则 ,
解得r=5,经检验,r=5是方程的根,
∴AB=2r=10,
∴,
∴,
∵∠BPC=∠CAB,
∴;
(3)解:如图,过点B作BG⊥CP交CP于点G,
∴∠BGC=∠BGP=90°,
∵∠ACB=90°,CP是∠ACB 的平分线,
∴∠ACP=∠BCP=45°,
∴∠CBG=45°,
∴,
∴,
∴,
∴.
九.相似形综合题(共1小题)
12.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.
【问题解决】
(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.
【类比迁移】
(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.
【答案】(1)证明见解析;
(2)证明见解析;
(3)3.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠C=∠ADE=90°,
∴∠CDF+∠DFC=90°,
∵AE⊥DF,
∴∠DGE=90°,
∴∠CDF+∠AED=90°,
∴∠AED=∠DFC,
∴△ADE∽△DCF;
(2)证明:∵四边形ABCD是正方形,
∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,
∵AE=DF,
∴Rt△ADE≌Rt△DCF(HL),
∴DE=CF,
∵CH=DE,
∴CF=CH,
∵点H在BC的延长线上,
∴∠DCH=∠DCF=90°,
又∵DC=DC,
∴△DCF≌△DCH(SAS),
∴∠DFC=∠H,
∵AD∥BC,
∴∠ADF=∠DFC,
∴∠ADF=∠H;
(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,
∵四边形ABCD是菱形,
∴AD=DC,AD∥BC,
∴∠ADE=∠DCG,
∴△ADE≌△DCG(SAS),
∴∠DGC=∠AED=60°,AE=DG,
∵AE=DF,
∴DG=DF,
∴△DFG是等边三角形,
∴FG=DF=11,
∵CF+CG=FG,
∴CF=FG﹣CG=11﹣8=3,
即CF的长为3.
一十.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).
【答案】30m.
【解答】解:如图所示:
过P作 PH⊥AB于H,过C作CG⊥PH于Q,而 CB⊥AB,
则四边形 CQHB是矩形,
∴QH=BC,BH=CQ,
由题意可得:AP=80,∠PAH=60°,∠PCQ=30°,AB=70,
∴PH=APsin60°=80×=40,AH=AP cos60°=40,
∴CQ=BH=70﹣40=30,
∴PQ=CQ•tan30°=10,
∴BC=QH=40﹣10=30,
∴大楼的高度BC为30m.
一十一.频数(率)分布直方图(共1小题)
14.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.
根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:
(1)A组数据的中位数是 69 ,众数是 74 ;在统计图中B组所对应的扇形圆心角是 54 度;
(2)补全学生心率频数分布直方图;
(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?
【答案】(1)69,74,54;
(2)见解答;
(3)1725名.
【解答】解:(1)把A组数据从小到大排列为:56,65,66,68,70,73,74,74,
故A组数据的中位数是:=69,众数是74;
由题意得,样本容量为:8÷8%=100,
在统计图中B组所对应的扇形圆心角是:360°×=54°.
故答案为:69,74,54;
(2)C组频数为:100﹣8﹣15﹣45﹣2=30,
补全学生心率频数分布直方图如下:
(3)2300×(30%+)=1725(名),
答:估计大约有1725名学生达到适宜心率.
一十二.列表法与树状图法(共1小题)
15.(2021•菏泽)2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)合格等级所占百分比为 30 %;不合格等级所对应的扇形圆心角为 36 度;
(3)从所抽取的优秀等级的学生A、B、C…中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求出恰好抽到A、B两位同学的概率.
【答案】见试题解答内容
【解答】解:(1)抽取的学生人数为:12÷40%=30(人),
则优秀的学生人数为:30﹣12﹣9﹣3=6(人),
把条形统计图补充完整如下:
(2)合格等级所占百分比为:9÷30×100%=30%,
不合格等级所对应的扇形圆心角为:360°×=36°,
故答案为:30,36;
(3)优秀等级的学生有6人,为A、B、C、D、E、F,
画树状图如图:
共有30种等可能的结果,恰好抽到A、B两位同学的结果有2种,
∴恰好抽到A、B两位同学的概率为=.
相关试卷
这是一份山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共41页。试卷主要包含了之间的函数关系如图中抛物线所示,【图形定义】,问题提出,,解答下列问题等内容,欢迎下载使用。
这是一份山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共36页。试卷主要包含了,与y轴交于点B,和点F,,顶点为C,已知等内容,欢迎下载使用。
这是一份山东省潍坊市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共30页。试卷主要包含了【材料阅读】,与点C关于y轴对称,【情境再现】等内容,欢迎下载使用。