


所属成套资源:2023年全国各地中考数学真题分类汇编
2023年全国各地中考数学真题分类汇编之实数的有关概念与计算(含解析)
展开
这是一份2023年全国各地中考数学真题分类汇编之实数的有关概念与计算(含解析),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
实数的有关概念与计算 一、单选题1.(2023·四川达州·统考中考真题)的倒数是( )A. B.2023 C. D.2.(2023·重庆·统考中考真题)8的相反数是( )A. B.8 C. D.3.(2023·四川泸州·统考中考真题)下列各数中,最大的是( )A. B.0 C.2 D.4.(2023·四川南充·统考中考真题)如果向东走10m记作,那么向西走记作( )A. B. C. D.5.(2023·四川宜宾·统考中考真题)2的相反数是( )A.2 B.-2 C. D.6.(2023·浙江·统考中考真题)﹣3的相反数是( )A. B. C. D.7.(2023·安徽·统考中考真题)的相反数是( )A.5 B. C. D.8.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是( )A.±2 B.2 C.﹣2 D.不存在9.(2023·浙江金华·统考中考真题)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是,,,,其中最低气温是( )A. B. C. D.10.(2023·四川遂宁·统考中考真题)已知算式□的值为,则“□”内应填入的运算符号为( )A.+ B.- C.× D.÷11.(2023·江苏连云港·统考中考真题)实数的相反数是( )A. B. C. D.6 12.(2023年安徽省滁州市南片五校中考二模数学试卷)的倒数是( )A. B. C. D.13.(2023·浙江宁波·统考中考真题)在这四个数中,最小的数是( )A. B. C.0 D.14.(2023·江西·统考中考真题)下列各数中,正整数是( )A. B. C. D.15.(2023·新疆·统考中考真题)﹣5的绝对值是( )A.5 B.﹣5 C. D.16.(2023·甘肃武威·统考中考真题)9的算术平方根是( )A. B. C.3 D.17.(2023·浙江温州·统考中考真题)如图,比数轴上点A表示的数大3的数是( ) A. B.0 C.1 D.218.(2023·四川自贡·统考中考真题)如图,数轴上点A表示的数是2023,,则点B表示的数是( )A.2023 B. C. D.19.(2023·浙江绍兴·统考中考真题)计算的结果是( )A. B. C.1 D.320.(2023·江苏扬州·统考中考真题)已知,则A.B.c的大小关系是( )A. B. C. D.21.(2023·江苏扬州·统考中考真题)的绝对值是( )A.3 B. C. D.22.(2023·重庆·统考中考真题)4的相反数是( )A. B. C.4 D. 23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )A. B. C. D.24.(2023·四川成都·统考中考真题)在,,,四个数中,最大的数是( )A.3 B. C.0 D.25.(2023·浙江嘉兴·统考中考真题)下面四个数中,比1小的正无理数是( )A. B. C. D.26.(2023·四川广安·统考中考真题)-6的绝对值是( )A.-6 B.6 C.- D.27.(2023·湖南怀化·统考中考真题)下列四个实数中,最小的数是( )A. B.0 C. D.28.(2023·浙江台州·统考中考真题)下列无理数中,大小在3与4之间的是( ).A. B. C. D.29.(2023·浙江台州·统考中考真题)下列各数中,最小的是( ).A.2 B.1 C. D. 二、填空题30.(2023·四川自贡·统考中考真题)请写出一个比小的整数________.31.(2023·四川泸州·统考中考真题)8的立方根为______.32.(2023·浙江嘉兴·统考中考真题)___________.33.(2023·四川广安·统考中考真题)的平方根是_______.34.(2023·重庆·统考中考真题)计算_____.35.(2023·重庆·统考中考真题)计算:________.36.(2023·四川凉山·统考中考真题)计算_________.37.(2023·安徽·统考中考真题)计算:_____________. 38.(2023·江苏连云港·统考中考真题)如图,数轴上的点分别对应实数,则__________0.(用“”“”或“”填空) 39.(2023·江苏连云港·统考中考真题)计算:__________. 三、解答题40.(2023·浙江金华·统考中考真题)计算:. 41.(2023·四川自贡·统考中考真题)计算:. 42.(2023·四川泸州·统考中考真题)计算:. 43.(2023·浙江·统考中考真题)计算:. 44.(2023·四川广安·统考中考真题)计算: 45.(2023·江苏连云港·统考中考真题)计算. 46.(2023·四川眉山·统考中考真题)计算: 47.(2023·云南·统考中考真题)计算:. 48.(2023·湖南怀化·统考中考真题)计算: 49.(2023·甘肃武威·统考中考真题)计算:. 50.(2023·浙江台州·统考中考真题)计算:. 51.(2023·四川乐山·统考中考真题)计算: 52.(2023·上海·统考中考真题)计算: 53.(2023·四川遂宁·统考中考真题)计算: 参考答案一、单选题1.【答案】C【分析】根据相乘等于1的两个数互为倒数,即可求解.【详解】解:的倒数是,故选:C.【点拨】本题考查了倒数,掌握倒数的定义是解题的关键.2.【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是,故选:A.【点拨】本题考查了相反数的定义,掌握相反数的定义是解题的关键.3.【答案】C【分析】首先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数.【详解】∵,∴,∴最大的数是2.故选:C.【点拨】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小. 4.【答案】C【分析】根据具有相反意义的量即可得.【详解】解:因为向东与向西是一对具有相反意义的量,所以如果向东走10m记作,那么向西走记作,故选:C.【点拨】本题考查了具有相反意义的量,熟练掌握具有相反意义的量是解题关键.5.【答案】B【详解】2的相反数是-2.故选:B.6.【答案】D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选:D.【点拨】本题考查相反数,题目简单,熟记定义是关键.7.【答案】A【分析】根据相反数的定义即可求解.【详解】解:的相反数是5,故选:A.【点拨】此题主要考查相反数,解题的关键是熟知相反数的定义.8.【答案】C【分析】根据立方根的定义进行解答.【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C.【点拨】本题主要考查了立方根,解决本题的关键是数积立方根的定义.9.【答案】A【分析】根据有理数的大小比较,即可作出判断.【详解】解:,故温度最低的城市是哈尔滨,故选:A.【点拨】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.10.【答案】A【分析】根据相反数相加为0判断即可.【详解】解:∵,∴“□”内应填入的运算符号为+,故选:A.【点拨】题目主要考查有理数的加法运算,熟练掌握运算法则是解题关键.11.【答案】D【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变前面的符号,即可得的相反数.【详解】解:的相反数是6.故选:D.【点拨】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.【答案】B【分析】根据倒数的概念,乘积为的两个数互为倒数,由此即可求解.【详解】解:的倒数是,故选:.【点拨】本题主要考查求一个数的倒数,掌握倒数的概念是解题的关键.13.【答案】A【分析】根据负数小于0小于正数,负数的绝对值大的反而小,进行判断即可.【详解】解:∵,∴,∴最小的数是;故选:A.【点拨】本题考查比较实数的大小.熟练掌握负数小于0小于正数,负数的绝对值大的反而小,是解题的关键.14.【答案】A【分析】根据有理数的分类即可求解.【详解】解:是正整数,是小数,不是整数,不是正数,不是正数,故选:A.【点拨】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.15.【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选:A.16.【答案】C【分析】由,可得9的算术平方根.【详解】解:9的算术平方根是3,故选:C.【点拨】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.17.【答案】D【分析】根据数轴及有理数的加法可进行求解.【详解】解:由数轴可知点A表示的数是,所以比大3的数是;故选:D.【点拨】本题主要考查数轴及有理数的加法,熟练掌握数轴上有理数的表示及有理数的加法是解题的关键.18.【答案】B【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A表示的数是2023,,∴,∴点B表示的数是,故选:B.【点拨】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.19.【答案】A【分析】根据有理数的减法法则进行计算即可.【详解】解:,故选:A.【点拨】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.20.【答案】C【分析】由,,进行判断即可.【详解】解:∵,,∴,故选:C.【点拨】本题考查了实数的大小比较,算术平方根.解题的关键在于对知识的熟练掌握.21.【答案】A【分析】根据绝对值的概念,可得的绝对值就是数轴上表示的点与原点的距离.进而得到答案.【详解】解:的绝对值是3,故选:A.【点拨】本题考查绝对值的定义,正确理解绝对值的定义是解题的关键. 22.【答案】D【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是,故选:D.【点拨】本题考查相反数的概念,关键是掌握相反数的定义.23.【答案】A【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A.,是有理数,则此项符合题意;B.是无限不循环小数,是无理数,则此项不符合题意;C.是无理数,则此项不符合题意;D.是无理数,则此项不符合题意;故选:A.【点拨】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.24.【答案】A【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得,∴最大的数是:3;故选:A.【点拨】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.25.【答案】A【分析】根据正数负数,即可进行解答.【详解】解:∵∴∴∴比1小的正无理数是.故选:A.【点拨】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数负数.26.【答案】B【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B.27.【答案】A【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】最小的数是:故选:A.【点拨】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.28.【答案】C【分析】根据无理数的估算可得答案.【详解】解:∵,,而,,∴大小在3与4之间的是,故选:C.【点拨】本题考查了无理数的估算,熟练掌握基础知识是解题的关键.29.【答案】D【分析】根据正数大于零,零大于负数,两个负数,绝对值大的反而小判断即可.【详解】解:∵2,1是正数,,是负数,∴最小数的是在,里,又,,且,∴,∴最小数的是.故选:D.【点拨】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则. 二、填空题30.【答案】(答案不唯一)【分析】根据算术平方根的意义求解 .【详解】解:∴由可得:,即,故答案为:(答案不唯一).【点拨】本题考查算术平方根和无理数的估算,熟练掌握基本知识是解题关键.31.【答案】2【分析】根据立方根的意义即可完成.【详解】∵∴8的立方根为2故答案为:2.【点拨】本题考查了立方根的意义,掌握立方根的意义是关键.32.【答案】2023【分析】负数的绝对值是它的相反数,由此可解.【详解】解:的相反数是2023,故,故答案为:2023.【点拨】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.33.【答案】±2【详解】解:∵∴的平方根是±2.故答案为:±2.34.【答案】1.5【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】.故答案为:1.5.【点拨】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.35.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:.故答案为:6.【点拨】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.36.【答案】【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】.故答案为:.【点拨】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.37.【答案】【分析】根据求一个数的立方根,有理数的加法即可求解.【详解】解:,故答案为:.【点拨】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.38.【答案】【分析】根据数轴可得,进而即可求解.【详解】解:由数轴可得∴故答案为:.【点拨】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.39.【答案】【分析】根据二次根式的性质即可求解.【详解】解:故答案为:.【点拨】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键. 三、解答题40.【答案】【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式,,.【点拨】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是注意各部分的运算法则,细心计算.41.【答案】【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:.【点拨】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.42.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.43.【答案】2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的意义分别化简,再利用有理数的加减运算法则计算得出答案.【详解】原式.【点拨】此题主要考查了负整数指数幂的性质以及零指数幂的性质,绝对值的意义,掌握这些知识并正确计算是解题关键.44.【答案】【分析】先计算有理数的乘方、零指数幂、特殊角的余弦值、化简绝对值,再计算乘法与加减法即可得.【详解】解:原式.【点拨】本题考查了零指数幂、特殊角的余弦值、实数的混合运算,熟练掌握各运算法则是解题关键.45.【答案】3【分析】根据化简绝对值,零指数幂以及负整数指数幂进行计算即可求解.【详解】解:原式.【点拨】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂以及负整数指数幂是解题的关键.46.【答案】6【分析】先计算零指数幂,负整数指数幂和特殊角三角函数值,再根据实数的混合计算法则求解即可.【详解】解:原式.【点拨】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.47.【答案】6【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:.【点拨】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.48.【答案】【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:【点拨】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.49.【答案】【分析】利用二次根式的混合运算法则计算即可.【详解】解:.【点拨】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.50.【答案】2【分析】根据绝对值的性质和算术平方根分别进行化简,再按照有理数加减混合运算即可求出答案.【详解】解: .【点拨】本题考查了实数的运算,解题的关键在于熟练掌握绝对值的性质、算术平方根,乘方的相关运算.51.【答案】1【分析】先化简绝对值及算术平方根,计算零次幂的运算,然后进行加减法即可.【详解】解: =1.【点拨】题目注意考查实数的混合运算,熟练掌握运算法则是解题关键.52.【答案】【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式.【点拨】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.53.【答案】【分析】根据特殊角的三角函数值,零指数幂,幂的运算法则计算即可.【详解】.【点拨】本题考查了特殊角的三角函数值,零指数幂,幂的运算,熟记三角函数值,零指数幂的运算公式是解题的关键.
相关试卷
这是一份专题01 实数的有关概念与计算(53题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题01实数的有关概念与计算53题原卷版docx、专题01实数的有关概念与计算53题解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份专题01 实数的有关概念与计算(53题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题01实数的有关概念与计算53题原卷版docx、专题01实数的有关概念与计算53题解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份2023年全国各地中考数学真题分类汇编之圆的有关位置关系(含解析),共73页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
