年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    九年级上册数学第22章 二次函数专题09 二次函数与铅垂法求面积

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题09 二次函数与铅垂法求面积(原卷版).docx
    • 解析
      专题09 二次函数与铅垂法求面积(解析版).docx
    专题09 二次函数与铅垂法求面积(原卷版)第1页
    专题09 二次函数与铅垂法求面积(原卷版)第2页
    专题09 二次函数与铅垂法求面积(原卷版)第3页
    专题09 二次函数与铅垂法求面积(解析版)第1页
    专题09 二次函数与铅垂法求面积(解析版)第2页
    专题09 二次函数与铅垂法求面积(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级上册数学第22章 二次函数专题09 二次函数与铅垂法求面积

    展开

    这是一份九年级上册数学第22章 二次函数专题09 二次函数与铅垂法求面积,文件包含专题09二次函数与铅垂法求面积原卷版docx、专题09二次函数与铅垂法求面积解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
    专题09 二次函数与铅垂法求面积
    解题点拨
    求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.
    【方法总结】
    作以下定义:
    A、B两点之间的水平距离称为“水平宽”;
    过点C作x轴的垂线与AB交点为D,线段CD即为AB边的“铅垂高”.
    如图可得:

    【解题步骤】
    (1)求A、B两点水平距离,即水平宽;
    (2)过点C作x轴垂线与AB交于点D,可得点D横坐标同点C;
    (3)求直线AB解析式并代入点D横坐标,得点D纵坐标;
    (4)根据C、D坐标求得铅垂高;
    (5)利用公式求得三角形面积.
    直击中考
    1.(2022·湖北襄阳·统考中考真题)在平面直角坐标系中,直线y=mx-2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=-x2+2mx-m2+2与y轴交于点C.

    (1)如图,当m=2时,点P是抛物线CD段上的一个动点.
    ①求A,B,C,D四点的坐标;
    ②当△PAB面积最大时,求点P的坐标;
    (2)在y轴上有一点M(0,m),当点C在线段MB上时,
    ①求m的取值范围;
    ②求线段BC长度的最大值.
    【答案】(1)①A(2,0),B(0,-4),C(0,-2),D(2,2);
    ②△PAB的面积的最大值是3,点P(1,1);
    (2)①或;
    ②13

    【分析】对于(1),先求出点A,B的坐标,再将抛物线关系式配方表示出点D的坐标,令
    x=0,表示出点C的坐标,然后将m的值代入即可得出①的答案;对于②,先求出直线和抛物线的解析式,再作轴,设点P的横坐标为t,即可表示出点P,E的坐标,然后表示出PE,进而根据三角形的面积公式表示△PAB的面积,再配方讨论极值即可;
    对于(2),由(1)可知,点B,C的坐标,再根据点C在线段MB上,分两种情况讨论,求出①的答案即可;对于②,根据①中的情况分别表示BC,再配方二次函数的性质求出答案即可.
    【详解】(1)∵直线与x轴,y轴分别交于A,B两点,
    ∴A(2,0),B(0,-2m).
    ∵,
    ∴抛物线的顶点坐标是D(m,2).
    令x=0,则,
    ∴.
    ①当m=2时,-2m=-4,则,
    ∴点B(0,-4),C(0,-2),D(2,2);
    ②由上可知,直线AB的解析式为,抛物线的解析式为,
    如图,过点P作轴交直线AB于点E.

    设点P的横坐标为t,
    ∴,,
    ∴,
    ∴△PAB的面积=,
    ∵-1<0,
    ∴当t=1时,△PAB的面积的最大值为3,此时P(1,1);
    (2)由(1)可知,B(0,-2m),C(0,-m2+2),
    ①∵y轴上有一点,点C在线段MB上,
    ∴需分两种情况讨论:
    当时,解得:,
    当时,解得:,
    ∴m的取值范围是或;
    ②当时,
    ∵,
    ∴当m=1时,BC的最大值为3;
    当时,
    ∴,
    当m=-3时,点M与点C重合,BC的最大值为13,
    ∴BC的最大值是13.
    【点睛】这是一道关于一次函数和二次函数的综合问题,考查了求函数关系式,二次函数图象的性质,二次函数与三角形的综合,根据二次函数关系式求极值等.
    2.(2022·山东枣庄·统考中考真题)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作ACx轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.

    (1)求抛物线的关系式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
    (3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
    (4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    【答案】(1)抛物线的解析式为:y=x2﹣4x+3
    (2)P点坐标为(,)
    (3)h的取值范围为3≤h≤4
    (4)存在,点P的坐标是(,)或(,)或(,)或(,)

    【分析】(1)利用待定系数法可得抛物线的解析式;
    (2)过P作PGy轴,交OE于点G,设P(m,m2﹣4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得△OPE的面积,利用二次函数的最值可得其最大值;
    (3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE的交点坐标、与AE的交点坐标,用含h的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h的取值范围;
    (4)存在四种情况:作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.
    (1)
    解:∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),
    ∴ ,
    解得,
    ∴抛物线的解析式为:y=x2﹣4x+3;
    (2)
    如图1,过P作PGy轴,交OE于点G,

    设P(m,m2﹣4m+3),
    ∵OE平分∠AOB,∠AOB=90°,
    ∴∠AOE=45°,
    ∴△AOE是等腰直角三角形,
    ∴AE=OA=3,
    ∴E(3,3),
    设直线OE的解析式为y=kx,把点(3,3)代入得,
    3=3k,
    解得k=1,
    ∴直线OE的解析式为:y=x,
    ∴G(m,m),
    ∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,
    ∴S△OPE=S△OPG+S△EPG
    PG•AE
    3×(﹣m2+5m﹣3)
    (m2﹣5m+3)
    (m)2,
    ∵0,
    ∴当m时,△OPE面积最大,
    此时m2﹣4m+3=,
    ∴P点坐标为(,);
    (3)
    由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),
    抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).
    设直线x=2交OE于点M,交AE于点N,则N(2,3),如图2,

    ∵直线OE的解析式为:y=x,
    ∴M(2,2),
    ∵点F在△OAE内(包括△OAE的边界),
    ∴2≤﹣1+h≤3,
    解得3≤h≤4;
    (4)
    设P(m,m2﹣4m+3),分四种情况:
    ①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y轴,交y轴于M,交l于N,

    ∴∠OMP=∠PNF=90°,
    ∵△OPF是等腰直角三角形,
    ∴OP=PF,∠OPF=90°,
    ∴∠OPM+∠NPF=∠PFN+∠NPF=90°,
    ∴∠OPM=∠PFN,
    ∴△OMP≌△PNF(AAS),
    ∴OM=PN,
    ∵P(m,m2﹣4m+3),
    则﹣m2+4m﹣3=2﹣m,
    解得:m或,
    ∵m>2,不合题意,舍去,
    ∴m,
    此时m2﹣4m+3=,
    ∴P的坐标为(,);
    ②当P在对称轴的左边,且在x轴上方时,
    同理得:2﹣m=m2﹣4m+3,
    解得:m1或m2,
    ∵>2,不合题意,舍去,
    ∴m=,
    此时m2﹣4m+3=,
    ∴P的坐标为(,);
    ③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,

    同理得△ONP≌△PMF,
    ∴PN=FM,
    则﹣m2+4m﹣3=m﹣2,
    解得:m1或m2;
    ∵<2,不合题意,舍去,
    ∴m=,
    此时m2﹣4m+3=,
    P的坐标为(,);
    ④当P在对称轴的右边,且在x轴上方时,如图5,
      
    同理得m2﹣4m+3=m﹣2,
    解得:m或(舍),
    P的坐标为:(,);
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    【点睛】本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想是解决问题的关键.
    3.(2022·山东烟台·统考中考真题)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.

    (1)求抛物线的表达式;
    (2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
    (3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.
    【答案】(1)y=﹣x2﹣x+4
    (2)S最大=,D(﹣,5)
    (3)存在,Q(﹣2,)

    【分析】(1)先求得A,C,B三点的坐标,将抛物线设为交点式,进一步求得结果;
    (2)作DF⊥AB于F,交AC于E,根据点D和点E坐标可表示出DE的长,进而表示出三角形ADC的面积,进而表示出S的函数关系式,进一步求得结果;
    (3)根据菱形性质可得PA=PC,进而求得点P的坐标,根据菱形性质,进一步求得点Q坐标.
    【详解】(1)解:当x=0时,y=4,
    ∴C (0,4),
    当y=0时,x+4=0,
    ∴x=﹣3,
    ∴A (﹣3,0),
    ∵对称轴为直线x=﹣1,
    ∴B(1,0),
    ∴设抛物线的表达式:y=a(x﹣1)•(x+3),
    ∴4=﹣3a,
    ∴a=﹣,
    ∴抛物线的表达式为:y=﹣(x﹣1)•(x+3)=﹣x2﹣x+4;
    (2)如图1,

    作DF⊥AB于F,交AC于E,
    ∴D(m,﹣﹣m+4),E(m,﹣m+4),
    ∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,
    ∴S△ADC=OA=•(﹣m2﹣4m)=﹣2m2﹣6m,
    ∵S△ABC===8,
    ∴S=﹣2m2﹣6m+8=﹣2(m+)2+,
    ∴当m=﹣时,S最大=,
    当m=﹣时,y=﹣=5,
    ∴D(﹣,5);
    (3)设P(﹣1,n),
    ∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,
    ∴PA=PC,
    即:PA2=PC2,
    ∴(﹣1+3)2+n2=1+(n﹣4)2,
    ∴n=,
    ∴P(﹣1,),
    ∵xP+xQ=xA+xC,yP+yQ=yA+yC
    ∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,
    ∴Q(﹣2,).
    【点睛】本题考查了二次函数及其图象性质,勾股定理,菱形性质等知识,解决问题的关键是熟练掌握相关二次函数和菱形性质
    4.(2022·四川广安·统考中考真题)如图,在平面直角坐标系中,抛物线(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).

    (1)求此抛物线的函数解析式.
    (2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
    (3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
    【答案】(1)
    (2)(-2,-4)
    (3)P点坐标为:(-1,3),(-1,-5),,

    【分析】(1)直接将B(0,-4),C(2,0)代入,即可求出解析式;
    (2)先求出直线AB关系式为:,直线AB平移后的关系式为:,当其与抛物线只有一个交点时,此时点D距AB最大,此时△ABD的面积最大,由此即可求得D点坐标;
    (3)分三种情况讨论,①当∠PAB=90°时,即PA⊥AB,则设PA所在直线解析式为:,将A(-4,0)代入得,解得:,此时P点坐标为:(-1,3);②当∠PBA=90°时,即PB⊥AB,则设PB所在直线解析式为:,将B(0,-4)代入得,,此时P点坐标为:(-1,-5);③当∠APB=90°时,设P点坐标为:,由于PA所在直线斜率为:,PB在直线斜率为:,=-1,则此时P点坐标为:,.
    【详解】(1)解:将B(0,-4),C(2,0)代入,
    得:,
    解得:,
    ∴抛物线的函数解析式为:.
    (2)向下平移直线AB,使平移后的直线与抛物线只有唯一公共点D时,此时点D到直线AB的距离最大,此时△ABD的面积最大,
    ∵时,,,
    ∴A点坐标为:(-4,0),
    设直线AB关系式为:,
    将A(-4,0),B(0,-4),代入,
    得:,
    解得:,
    ∴直线AB关系式为:,
    设直线AB平移后的关系式为:,
    则方程有两个相等的实数根,
    即有两个相等的实数根,
    ∴,
    即的解为:x=-2,
    将x=-2代入抛物线解析式得,,
    ∴点D的坐标为:(-2,-4)时,△ABD的面积最大;
    (3)①当∠PAB=90°时,
    即PA⊥AB,则设PA所在直线解析式为:,
    将A(-4,0)代入得,,
    解得:,
    ∴PA所在直线解析式为:,
    ∵抛物线对称轴为:x=-1,
    ∴当x=-1时,,
    ∴P点坐标为:(-1,3);
    ②当∠PBA=90°时,
    即PB⊥AB,则设PB所在直线解析式为:,
    将B(0,-4)代入得,,
    ∴PA所在直线解析式为:,
    ∴当x=-1时,,
    ∴P点坐标为:(-1,-5);
    ③当∠APB=90°时,设P点坐标为:,
    ∴PA所在直线斜率为:,PB在直线斜率为:,
    ∵PA⊥PB,
    ∴=-1,
    解得:,,
    ∴P点坐标为:,
    综上所述,P点坐标为:(-1,3),(-1,-5),,时,△PAB为直角三角形.
    【点睛】本题主要考查的是二次函数图象与一次函数、三角形的综合,灵活运用所学知识是解题的关键.
    5.(2022·湖北随州·统考中考真题)如图1,平面直角坐标系xOy中,抛物线与x轴分则点A和点,与y轴交于点C,对称轴为直线,且,P为抛物线上一动点.

    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
    【答案】(1)
    (2),P点的坐标为
    (3)存在,,;,;,

    【分析】(1)根据已知条件,列出方程组求出a,b,c的值即可;
    (2)方法一:设,四边形PABC的面积,用m表示出S,并求出S的最大值与此时P点的坐标;
    方法二:易知,,故直线AC的方程为,设,表示出PQ,并用x表示出△APC的面积,再表示出S,并求出S的最大值与此时P点的坐标;
    (3)根据题目要求,分类讨论当当N在y轴上时;当N在x轴负半轴上时,设,用t表示出点P的坐标,解出t,写出点P及其对应点N的坐标.
    【详解】(1)解:∵,
    ∴,,
    ∵,对称轴为直线,,
    ∴,解得,
    ∴抛物线的解析式为:.
    (2)解:方法一:连接OP,

    设,易知,,
    ∵,,
    ∴四边形PABC的面积,


    又∵,

    ∴当时,,
    ∴此时P点的坐标为;
    方法二:易知,,故直线AC的方程为

    设,
    ∵过点P作PQ⊥x轴,交AC于点Q,
    ∴,
    ∵点P在AC上方,
    ∴,


    ∴四边形PABC面积,
    ∴当时,S有最大值,
    ∴此时P点的坐标为.
    (3)存在点N.
    ①当N在y轴上时,

    ∵四边形PMCN为矩形,
    此时,,;
    ②当N在x轴负半轴上时,如图所示,四边形PMCN为矩形,过M作y轴的垂线,垂足为D,过P作x轴的垂线,垂足为E,设,则,

    ∴,
    ∵四边形PMCN为矩形,
    ∴,,
    ∵,,
    ∴,
    又∵,
    ∴,
    ∴,
    又∵点M在对称轴上,,
    ∴,
    ∴,即,
    ∵,,
    ∴,
    ∴,
    ∴,,
    ∴,
    ∴P点的坐标为,
    ∵P点在抛物线上,

    解得,(舍),
    ∴,;
    ③当N在x轴正半轴上时,如图所示,四边形PMCN为矩形,过M作y轴的垂线,垂足为D,过P作x轴的垂线,垂足为E,设,则,

    ∴,
    ∵四边形PMCN为矩形时,
    ∴,,
    ∵,,
    ∴,
    又∵,
    ∴,
    ∴,
    又∵点M在对称轴上,,
    ∴,
    ∴,即,
    ∵,,
    ∴,
    ∴,
    ∴,,
    ∴,
    ∴P点的坐标为,
    ∵P点在抛物线上,

    解得(舍),,
    ∴,,
    综上:,;,;,
    【点睛】本题考查用待定系数法求二次函数、二次函数综合问题,矩形的性质与判定,二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.
    6.(2022·湖南娄底·统考中考真题)如图,抛物线与轴相交于点、点,与轴相交于点.

    (1)请直接写出点,,的坐标;
    (2)点在抛物线上,当取何值时,的面积最大?并求出面积的最大值.
    (3)点是抛物线上的动点,作//交轴于点,是否存在点,使得以、、、为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点的坐标;若不存在,请说明理由.
    【答案】(1),,;
    (2),面积的最大值;
    (3)存在,或或.

    【分析】(1)令得到,求出x即可求得点A和点B的坐标,令,则即可求点C的坐标;
    (2)过P作轴交BC于Q,先求出直线BC的解析式,根据三角形的面积,当平行于直线BC直线与抛物线只有一个交点时,点P到BC的距离最大,此时,的面积最大,利用三角形面积公式求解;
    (3)根据点是抛物线上的动点,作//交轴于点得到,设,当点F在x轴下方时,当点F在x轴的上方时,结合点,利用平行四边形的性质来列出方程求解.
    【详解】(1)解:令,
    则,
    解得,,
    ∴,,
    令,则,
    ∴;
    (2)解:过P作轴交BC于Q,如下图.

    设直线BC为,将、代入得

    解得,
    ∴直线BC为,
    根据三角形的面积,当平行于直线BC直线与抛物线只有一个交点时,点P到BC的距离最大,此时,的面积最大,
    ∵,
    ∴ ,,
    ∴,
    ∵,
    ∴时,PQ最大为,
    而,
    ∴的面积最大为;
    (3)解:存在.
    ∵点是抛物线上的动点,作//交轴于点,如下图.

    ∴,设.
    当点F在x轴下方时,
    ∵,
    即,
    ∴,
    解得(舍去),,
    ∴.
    当点F在x轴的上方时,令,
    则 ,
    解得,,
    ∴或.
    综上所述,满足条件的点F的坐标为或或.
    【点睛】本题是二次函数与平行四边形、二次函数与面积等问题的综合题,主要考查求点的坐标,平行四边形的性质,面积的表示,涉及方程思想,分类思想等.
    7.(2022·四川广元·统考中考真题)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.
      
    (1)求a,b满足的关系式及c的值;
    (2)当a=时,若点P是抛物线对称轴上的一个动点,求△PAB周长的最小值;
    (3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.
    【答案】(1)2a=b+1,c=-2;
    (2)△PAB的周长最小值是2+2;
    (3)此时Q(-1,-2),DQ最大值为.

    【分析】(1)先求得点A、点B的坐标,再利用待定系数法求解即可;
    (2)先利用对称性找出△PAB周长最小时点P的位置,此时AP=CP,△PAB的周长最小值为:PB+PA+AB=BC+AB,根据勾股定理求出AB、BC的长即可求出△PAB最小值;
    (3)过点Q作QF⊥x轴交于F点,交直线AB于点E,得到∠QED=∠EQD=45°,推出QD=ED=EQ,设Q(t,t2+t-2),E(t,-t-2),求得QE=-t2-2t,再利用二次函数的性质即可求解.
    (1)
    解:∵直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,
    ∴点A的坐标为(-2,0),点B的坐标为(0,-2),
    ∵抛物线y=ax2+bx+c(a>0)经过A,B两点,
    ∴,
    ∴2a=b+1,c=-2;
    (2)
    解:当a=时,则b=-,
    ∴抛物线的解析式为y=x2-x-2,
    抛物线的对称轴为直线x=1,
    ∵点A的坐标为(-2,0),
    ∴点C的坐标为(4,0) ,

    △PAB的周长为:PB+PA+AB,且AB是定值,
    ∴当PB+PA最小时,△PAB的周长最小,
    ∵点A、C关于直线x=1对称,
    ∴连接BC交直线x=1于点P,此时PB+PA值最小,
    ∵AP=CP,
    ∴△PAB的周长最小值为:PB+PA+AB=BC+AB,
    ∵A(-2,0),B(0,-2),C(4,0),
    ∴OA=2,OB=2,OC=4,
    由勾股定理得BC=2,AB=2,
    ∴△PAB的周长最小值是:2+2.
    (3)
    解:当a=1时,b=1,
    ∴抛物线的解析式为y=x2+x-2,
    过点Q作QF⊥x轴交于F点,交直线AB于点E,

    ∵A(-2,0),B(0,-2),
    ∴OA=OB,
    ∴∠OAB=45°,
    ∵QD⊥AB,
    ∴∠AEF=∠QED=∠EQD=45°,
    ∴QD=ED=EQ,
    设Q(t,t2+t-2),E(t,-t-2), 
    ∴QE=-t-2-(t2+t-2)=-t2-2t,
    ∴DQ=QE=-(t2+2t)= -(t+1)2+,
    当t=-1时,DQ有最大值,此时Q(-1,-2).
    【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,等腰直角三角形的性质是解题的关键.
    8.(2019·广西贺州·统考中考真题)如图,在平面直角坐标系中,已知点的坐标为,且,抛物线图象经过三点.
    (1)求两点的坐标;
    (2)求抛物线的解析式;
    (3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.

    【答案】(1)A(4,0),C(0,﹣4);(2) ;(3)PD的最大值为,此时点P(2,﹣6).
    【分析】(1)OA=OC=4OB=4,即可求解;
    (2)抛物线的表达式为: ,即可求解;
    (3),即可求解.
    【详解】解:(1)OA=OC=4OB=4,
    故点A、C的坐标分别为(4,0)、(0,﹣4);
    (2)抛物线的表达式为:,
    即﹣4a=﹣4,解得:a=1,
    故抛物线的表达式为: ;
    (3)直线CA过点C,设其函数表达式为:,
    将点A坐标代入上式并解得:k=1,
    故直线CA的表达式为:y=x﹣4,
    过点P作y轴的平行线交AC于点H,

    ∵OA=OC=4,



    设点 ,则点H(x,x﹣4),

    ∵ <0,∴PD有最大值,当x=2时,其最大值为,
    此时点P(2,﹣6).
    【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD,是本题解题的关键
    9.(2022·甘肃平凉·校考二模)如图, 拋物线交轴于点,交轴于点、C两点,点为线段上的一个动点(不与重合),过点作轴,交于点,交抛物线于点.

    (1)求抛物线的解析式;
    (2)连接和,当的面积最大时,求出点的坐标及的最大面积;
    (3)在平面内是否存在一点,使得以点A,M,N,P为顶点,以为边的四边形是菱形?若存在,请求出点的坐标;若不存在,请说明理由.
    【答案】(1);
    (2)当时,有最大值,最大值为8,此时D;
    (3)P或.

    【分析】(1)将A,B的坐标代入抛物线的解析式组成二元一次方程组,求解即可;
    (2)设D,根据坐标的特点,可得出点M,N的坐标,再根据三角形的面积公式可表达的面积,根据二次函数的性质可得出结论;
    (3)根据题意,易证,由此得出和的长,再根据题意需要分两种情况讨论:①当时,②当时,分别求解即可.
    【详解】(1)解:将点,点代入抛物线,
    ∴,
    ∴.
    ∴抛物线的解析式为:;
    (2)解:∵点,点,
    ∴直线的解析式为:;
    设D,
    ∵轴,点M在直线上,点N在抛物线上,
    ∴,
    ∴,
    ∴的面积,
    ∵,
    ∴当时,有最大值,最大值为8,此时D;
    (3)解:存在,如图,过点M作轴于点E,

    ∴,
    ∴,
    ∴,
    ∴,
    中,,
    ∴,
    ∴,
    ∴.
    根据题意,需要分两种情况讨论:
    ①时,如图,
    此时,  
    解得或t=0(舍),
    ∴,
    ∴,
    ∵,
    ∴点P在y轴上,
    ∴,
    ∴P;
    ②当时,如图,此时与互相垂直平分,设与交于点F,

    ∴,
    ∵,
    ∴,
    解得或(舍),
    ∴,
    ∴P.
    综上,存在点P,使得以点A,M,N,P为顶点,以为边的四边形是菱形,此时P或.
    【点睛】此题主要考查了二次函数解析式的确定、菱形的判定和性质、分类讨论的思想等知识,能力要求较高,难度较大,关键是掌握菱形的对称性和进行正确的分类讨论.
    10.(2022·甘肃平凉·统考二模)如图,抛物线与轴交于,两点.

    (1)求该抛物线的解析式;
    (2)设(1)中的抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
    (3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?若存在,求出面积的最大值.若没有,请说明理由.
    【答案】(1)抛物线的解析式为:
    (2)存在,点的坐标为
    (3)存在,最大值为

    【分析】(1)根据题意可知,将点、的坐标代入函数解析式,列出方程组即可求得、的值,求得函数解析式;
    (2)根据题意可知,边的长是定值,要想的周长最小,即是最小,所以此题的关键是确定点的位置,找到点的对称点,求得直线的解析式,求得与对称轴的交点即是所求;
    (3)设,过点作轴交于点,连接、、,根据,将表示成二次函数,再根据二次函数的性质,即可求得的最大值.
    【详解】(1)解:将,代入中,
    可得:,
    解得:,
    ∴抛物线的解析式为:;
    (2)解:存在,理由如下:
    如图,
    ∵、两点关于抛物线的对称轴对称,
    ∴直线与的交点即为点,此时周长最小,连接、,
    ∵点是抛物线与轴的交点,
    ∴的坐标为,
    又∵,
    ∴直线解析式为:,
    ∴点坐标即为,
    解得:,
    ∴;

    (3)解:存在,理由如下:
    如图,设,过点作轴交于点,连接、、,
    ∵,
    若有最大值,则就最大,
    ∴,
    ∵,
    又∵,
    ∴,
    ∴,
    ∴,
    ∴当时,最大值为.

    【点睛】本题考查了二次函数的综合应用,要注意距离最短问题的求解关键是点的确定,还要注意面积的求解可以借助于图形的分割与拼凑,特别是要注意数形结合思想的应用.
    11.(2022·重庆永川·统考一模)如图,在平面直角坐标系中,已知抛物线y=ax2+4x+c与直线AB相交于点A(0,1)和点B(3,4).

    (1)求该抛物线的解析式;
    (2)设C为直线AB上方的抛物线上一点,连接AC,BC,以AC,BC为邻边作平行四边形ACBP,求四边形ACBP面积的最大值;
    (3)将该抛物线向左平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,是否存在点E使得△ADE是以AD为腰的等腰直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.
    【答案】(1)
    (2)
    (3)存在,E(4,3)或(-2,5)或(-3,2)或(3,0).

    【分析】(1)将A,B两点代入到解析式中,得到a与c的值,求得抛物线的解析式;
    (2)设C(m,-m2+4m+1),过C作CM∥y轴交AB于M,则可以得到M的坐标(m,m+1),表示出线段CM的长,△ABC的面积可以分解为△ACM与△BCM之和,可以用m表示出△ABC的面积,得到关于m的二次函数,根据m的范围,确定函数的最值,从而求得C点坐标;
    (3)将抛物线配成顶点式,直接写出平移后的抛物线解析式,联立两个抛物线解析式,求得D的坐标,以AD为腰的等腰直角三角形,分四类讨论,即A和D可以均为直角顶点,同时,E的位置可以在AD右侧,也可以在AD左侧,构造一线三等角模型,求出E点坐标即可.
    (1)
    解:将点A、B的坐标代入抛物线表达式得.
    解得:.
    ∴抛物线的表达式为;
    (2)
    解:设直线AB的表达式为:,将点A、B的坐标代入得:
    .  解得:.
    故直线AB的表达式为:.
    过点C作轴的平行线交AB于点H.如图.

    设点C(,),则H(,+1).
    ∵四边形ACBP是平行四边形,

    .                                            
    ∵-3

    相关试卷

    九年级上册数学第22章 二次函数专题10 二次函数与面积定值、面积比例问题:

    这是一份九年级上册数学第22章 二次函数专题10 二次函数与面积定值、面积比例问题,文件包含专题10二次函数与面积定值面积比例问题原卷版docx、专题10二次函数与面积定值面积比例问题解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。

    初中数学人教版九年级上册22.1.1 二次函数第2课时课后练习题:

    这是一份初中数学人教版九年级上册22.1.1 二次函数第2课时课后练习题,共3页。试卷主要包含了【合作复习】,【自主学习】,【合作交流】,【课堂练习】,【课堂作业】,【中考体验】等内容,欢迎下载使用。

    初中数学人教版九年级上册22.1.1 二次函数第2课时复习练习题:

    这是一份初中数学人教版九年级上册22.1.1 二次函数第2课时复习练习题,共3页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map