年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新教材2023_2024学年高中数学第3章圆锥曲线与方程3.2双曲线3.2.1双曲线的标准方程分层作业湘教版选择性必修第一册

    新教材2023_2024学年高中数学第3章圆锥曲线与方程3.2双曲线3.2.1双曲线的标准方程分层作业湘教版选择性必修第一册第1页
    新教材2023_2024学年高中数学第3章圆锥曲线与方程3.2双曲线3.2.1双曲线的标准方程分层作业湘教版选择性必修第一册第2页
    新教材2023_2024学年高中数学第3章圆锥曲线与方程3.2双曲线3.2.1双曲线的标准方程分层作业湘教版选择性必修第一册第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学湘教版(2019)3.2 双曲线测试题

    展开

    这是一份数学湘教版(2019)3.2 双曲线测试题,共6页。试卷主要包含了已知点P在双曲线C等内容,欢迎下载使用。
    3.2 双曲线3.2.1 双曲线的标准方程A级 必备知识基础练1.双曲线=1的两个焦点为F1,F2,双曲线上一点PF1的距离为8,则点PF2的距离为(  )A.2或12 B.2或18 C.18 D.22.若椭圆=1与双曲线x2-15y2=15的焦点相同,则m的值为(  )A.3 B.4 C.6 D.93.F1(-,0),F2(,0)为焦点且过点P(2,1)的双曲线方程是(  )A.-y2=1 B.-y2=1C.-y2=1 D.x2-=14.m是常数,若F(0,5)是双曲线=1的一个焦点,则m=     . 5.已知点F1,F2分别是双曲线=1(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,则PF1F2的周长是     . 6.已知点P在双曲线C:=1(m>-1)上,且点P的横坐标为m-1,双曲线C的左、右焦点分别为F1,F2.|F1F2|=6,则m的值为     ,PF1F2的面积为     . 7.已知双曲线=1的左、右焦点分别为F1,F2,P为双曲线上一点,且PF1PF2,则PF1F2的面积为     . 8.m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,C的焦距为6,C上一点到两焦点距离之差的绝对值为4这三个条件中任选一个,补充在下面的横线上,并解答.已知双曲线C:=1,     ,求C的标准方程.    B级 关键能力提升练9.在方程mx2-my2=n中,若mn<0,则方程表示的曲线是(  )A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线10.已知动点P(x,y)满足=2,则动点P的轨迹是(  )A.椭圆 B.双曲线C.双曲线的左支 D.双曲线的右支11.已知双曲线的一个焦点为F1(-,0),点P在双曲线上,且线段PF1的中点的坐标为(0,2),则此双曲线的标准方程是(  )A.-y2=1 B.x2-=1C.=1 D.=112.若椭圆=1(a>b>0)和双曲线=1(m>0,n>0)有相同的焦点F1,F2,P是椭圆和双曲线的一个交点,则|PF1|·|PF2|的值是(  )A. B.(a2-m)C.a2-m D.a2-m213.已知定点F1(-2,0),F2(2,0),N是圆O:x2+y2=1上任意一点,点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,则点P的轨迹是(  )A.椭圆 B.双曲线 C.抛物线 D.14.已知双曲线=1的左、右焦点分别为F1,F2,点P为双曲线上一点,F1PF2的内切圆圆心为M,若+8,则=(  )A.2 B.6 C.8 D.1015.过原点的直线l与双曲线x2-y2=6交于A,B两点,点P为双曲线上一点,若直线PA的斜率为2,则直线PB的斜率为(  )A.4 B.1 C. D.16.已知双曲线2x2-y2=k的焦距为6,则k的值为     . 17.若双曲线=1(a>0,b>0)的两个焦点为F1,F2,|F1F2|=10,P为双曲线上一点,|PF1|=2|PF2|,PF1PF2,求此双曲线的标准方程.                  C级 学科素养创新练18.已知F是双曲线=1的下焦点,A(4,1)是双曲线外一点,P是双曲线上支上的动点,则|PF|+|PA|的最小值为(  )A.9 B.8 C.7 D.6 
    3.2.1 双曲线的标准方程1.C 由双曲线定义可知||PF2|-8|=2a=10,解得|PF2|=18或-2(舍),故点PF2的距离为18,故选C.2.D 将双曲线方程化为标准方程得-y2=1,所以双曲线的焦点坐标为(±4,0),由于椭圆与双曲线有相同的焦点,所以由椭圆的方程得m=25-16=9.故选D.3.A 由题意得双曲线的焦点在x轴上且c2=3,设双曲线的标准方程为=1(a>0,b>0),则有a2+b2=c2=3,=1,解得a2=2,b2=1,故所求双曲线的标准方程为-y2=1.故选A.4.16 由题意可知c2=25,则m+9=25,解得m=16.5.34 |PF1|=2|PF2|=16,|PF1|-|PF2|=16-8=8=2a,a=4.b2=9,c2=25,2c=10.∴△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.6.4  由题意可知|F1F2|=2=6,解得m=4,此时双曲线的方程为=1,点P的横坐标为xP=3,所以点P的纵坐标为yP=±,所以PF1F2的面积为|F1F2|·|yP|=×6×.7.16 (方法1)由题意得a2=36,b2=16,c2=a2+b2=52.在RtPF1F2中,由勾股定理得|F1F2|2=|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1|·|PF2|,即4c2=4a2+2|PF1|·|PF2|,即4×52=4×36+2|PF1|·|PF2|,得|PF1|·|PF2|=32,PF1F2面积为|PF1|·|PF2|=16.(方法2)本题中b2=16,F1PF2=90°,因此PF1F2的面积为S==16.8.解若选,因为m>0,所以a2=m,b2=2m,c2=a2+b2=3m,所以a=,c=.因为C的左支上任意一点到右焦点的距离的最小值为a+c,所以=3+,解得m=3,故C的标准方程为=1.若选,则c=3.m>0,则a2=m,b2=2m,c2=a2+b2=3m,所以c==3,解得m=3,则C的标准方程为=1;m<0,则a2=-2m,b2=-m,c2=a2+b2=-3m,所以c==3,解得m=-3,则C的标准方程为=1.综上,C的标准方程为=1或=1.若选,因为C上一点到两焦点距离之差的绝对值为4,所以2a=4,即a=2.m>0,则a2=m,所以a==2,解得m=4,则C的标准方程为=1;m<0,则a2=-2m,所以a==2,解得m=-2,则C的标准方程为=1.综上,C的标准方程为=1或=1.9.D 方程mx2-my2=n可化为=1.因为mn<0,所以<0,->0.方程又可化为=1,所以方程表示焦点在y轴上的双曲线.故选D.10.D =2表示动点P(x,y)到两定点F1(-2,0),F2(2,0)的距离之差等于2,而2<|F1F2|=4,由双曲线的定义,知动点P的轨迹是双曲线的右支.故选D.11.B 根据已知条件得双曲线的焦点在x轴上,设双曲线的方程为=1(a>0,b>0),则a2+b2=5. 线段PF1的中点的坐标为(0,2),P的坐标为(,4),将其代入双曲线的方程,=1. ①②解得a2=1,b2=4,双曲线的标准方程为x2-=1.12.D 由题意可得|PF1|+|PF2|=2a,||PF1|-|PF2||=2m,两式平方相减得4|PF1|·|PF2|=4a2-4m2,|PF1|·|PF2|=a2-m2.故选D.13. B 如图所示,连接ON,由题意可得|ON|=1,且NMF1的中点, |MF2|=2.F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P.由垂直平分线的性质可得|PM|=|PF1|.||PF2|-|PF1||=||PF2|-|PM||=|MF2|=2<|F1F2|.由双曲线的定义可得点P的轨迹是以F1,F2为焦点的双曲线.14.D 由双曲线=1得a=4,b=3,可得c==5.F1PF2的内切圆的半径为r,由+8,可得r|PF1|=r|PF2|+8,即r(|PF1|-|PF2|)=8.易得|PF1|-|PF2|>0,由双曲线的定义可得|PF1|-|PF2|=2a=8,则有4r=8,解得r=2,则r|F1F2|=10.15.C 由题意可设A(m,n),B(-m,-n),P(x,y),x±m,y±n,m2-n2=6,x2-y2=6,即y2-n2=x2-m2,所以=1,由直线PA的斜率为kPA=,直线PB的斜率为kPB=,可得kPA·kPB==1,而kPA=2,所以kPB=.故选C.16.±6 易知k0,则由2x2-y2=k,可得=1,当k>0时,a2=,b2=k,由题意知+k=9,即k=6;当k<0时,a2=-k,b2=-,由题意知-k-=9,即k=-6.综上,k=±6.17.|F1F2|=10,2c=10,c=5.|PF1|-|PF2|=2a,且|PF1|=2|PF2|,|PF2|=2a,|PF1|=4a.在RtPF1F2中,|F1F2|2=|PF1|2+|PF2|2,4a2+16a2=100,得a2=5.b2=c2-a2=20.故所求的双曲线的标准方程为=1.18.A F是双曲线=1的下焦点,a=2,b=2,c=4,F(0,-4).上焦点为F1(0,4),由双曲线的定义可得|PF|+|PA|=2a+|PF1|+|PA|≥2a+|AF1|=4+=9,A,P,F1三点共线时,|PF|+|PA|取得最小值9.故选A.

    相关试卷

    高中数学湘教版(2019)选择性必修 第一册3.2 双曲线巩固练习:

    这是一份高中数学湘教版(2019)选择性必修 第一册3.2 双曲线巩固练习,共7页。试卷主要包含了双曲线C等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第一册3.2 双曲线测试题:

    这是一份高中数学人教A版 (2019)选择性必修 第一册3.2 双曲线测试题,共15页。

    高中数学苏教版 (2019)选择性必修第一册3.2 双曲线课后练习题:

    这是一份高中数学苏教版 (2019)选择性必修第一册3.2 双曲线课后练习题,共7页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map