搜索
    上传资料 赚现金
    英语朗读宝

    2024年新高考数学一轮复习题型归类与强化测试专题20导数与不等式的证明(Word版附解析)

    2024年新高考数学一轮复习题型归类与强化测试专题20导数与不等式的证明(Word版附解析)第1页
    2024年新高考数学一轮复习题型归类与强化测试专题20导数与不等式的证明(Word版附解析)第2页
    2024年新高考数学一轮复习题型归类与强化测试专题20导数与不等式的证明(Word版附解析)第3页
    还剩33页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题20导数与不等式的证明(Word版附解析)

    展开

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题20导数与不等式的证明(Word版附解析),共36页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
    
    专题20导数与不等式的证明
    知识梳理
    方法技巧


    题型归类
    题型一:移项构造函数证明不等式
    题型二:换元构造法
    题型三:将不等式转化为函数的最值问题
    题型四:将不等式转化为两个函数的最值进行比较
    题型五:分拆函数法证明不等式
    题型六:放缩后构造函数证明不等式


    培优训练
    训练一:
    训练二:
    训练三:
    训练四:
    训练五:
    训练六:
    强化测试
    解答题:共16题
    一、【知识梳理】
    【方法技巧】
    1.待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”或“右减左”的函数,利用导数研究其单调性等相关函数性质证明不等式.
    2.若直接求导后导数式比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.在证明过程中,等价转化是关键,此处g(x)min≥f(x)max恒成立,从而f(x)≤g(x)恒成立.
    3.等价变形的目的是求导后简单地找到极值点,一般地,ex与ln x要分离,常构造xn与ln x,xn与ex的积、商形式.便于求导后找到极值点.
    4.某些不等式,直接构造函数不易求其最值,可以适当地利用熟知的函数不等式ex≥x+1,1-≤ln x≤x-1等进行放缩,有利于简化后续导数式的求解或函数值正负的判断;也可以利用局部函数的有界性进行放缩,然后再构造函数进行证明.
    5.在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.
    6.在证明过程中,“隔离”化是关键,此处f(x)min>g(x)max恒成立.从而f(x)>g(x),但此处f(x)与g(x)取到最值的条件不是同一个“x的值”. 
    7.换元法构造函数证明不等式的基本思路是直接消掉参数a,再结合所证问题,巧妙引入变量c=,从而构造相应的函数.其解题要点为: 
    联立
    消参
    利用方程f(x1)=f(x2)消掉解析式中的参数a
    抓商
    构元
    令c=,消掉变量x1,x2,构造关于c的函数h(c) 
    用导
    求解
    利用导数求解函数h(c)的最小值,从而可证得结论

    二、【题型归类】
    【题型一】移项构造函数证明不等式
    【典例1】已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
    (1)求f(x)的单调区间与极值;
    (2)求证:当a>ln ,且x>0时,>x+-3a.
    【解析】(1)解 由f(x)=ex-3x+3a,x∈R,
    知f′(x)=ex-3,x∈R.
    令f′(x)=0,得x=ln 3,
    于是当x变化时,f′(x),f(x)的变化情况如下表:
    x
    (-∞,ln 3)
    ln 3
    (ln 3,+∞)
    f′(x)

    0

    f(x)

    极小值

    故f(x)的单调递减区间是(-∞,ln 3),单调递增区间是(ln 3,+∞),
    f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=eln 3-3ln 3+3a=3(1-ln 3+a),无极大值.
    (2)证明 待证不等式等价于ex>x2-3ax+1,
    设g(x)=ex-x2+3ax-1,x>0,
    于是g′(x)=ex-3x+3a,x>0.
    由(1)及a>ln =ln 3-1知
    g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
    于是对任意x>0,都有g′(x)>0,
    所以g(x)在(0,+∞)内单调递增.
    于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
    而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
    即ex>x2-3ax+1,故>x+-3a.
    【典例2】证明:当x>1时,x2+ln x1时,g(x)>g(1)=>0,
    所以当x>1时,x2+ln x<x3.
    【题型二】换元构造法
    【典例1】已知函数f(x)=ln x-ax(x>0),a为常数,若函数f(x)有两个零点x1,x2(x1≠x2).求证:x1x2>e2.
    【证明】不妨设x1>x2>0,
    因为ln x1-ax1=0,ln x2-ax2=0,
    所以ln x1+ln x2=a(x1+x2),ln x1-ln x2=a(x1-x2),所以=a,
    欲证x1x2>e2,即证ln x1+ln x2>2.
    因为ln x1+ln x2=a(x1+x2),
    所以即证a>,
    所以原问题等价于证明>,
    即ln>,
    令c=(c>1),
    则不等式变为ln c>.
    令h(c)=ln c-,c>1,
    所以h′(c)=-=>0,
    所以h(c)在(1,+∞)上单调递增,
    所以h(c)>h(1)=ln 1-0=0,
    即ln c->0(c>1),因此原不等式x1x2>e2得证.
    【典例2】已知函数f(x)=ln x-ax2+x,a∈R.
    (1)当a=0时,求函数f(x)的图象在(1,f(1))处的切线方程;
    (2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥.
    【解析】(1)当a=0时,f(x)=ln x+x,则f(1)=1,所以切点为(1,1),又因为f′(x)=+1,所以切线的斜率k=f′(1)=2,故切线方程为y-1=2(x-1),即2x-y-1=0.
    (2)证明:当a=-2时,f(x)=ln x+x2+x(x>0). 
    由f(x1)+f(x2)+x1x2=0,
    得ln x1+x+x1+ln x2+x+x2+x1x2=0,
    从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),
    令t=x1x2(t>0),令φ(t)=t-ln t,得φ′(t)=1-=,
    易知φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t)≥φ(1)=1,所以(x1+x2)2+(x1+x2)≥1,因为x1>0,x2>0,所以x1+x2≥.
    【题型三】将不等式转化为函数的最值问题
    【典例1】已知函数g(x)=x3+ax2.
    (1)若函数g(x)在[1,3]上为单调函数,求a的取值范围;
    (2)已知a>-1,x>0,求证:g(x)>x2ln x.
    【解析】(1)解 由题意知,函数g(x)=x3+ax2,
    则g′(x)=3x2+2ax,
    若g(x)在[1,3]上单调递增,
    则g′(x)=3x2+2ax≥0在[1,3]上恒成立,
    则a≥-;
    若g(x)在[1,3]上单调递减,
    则g′(x)=3x2+2ax≤0在[1,3]上恒成立,
    则a≤-.所以a的取值范围是∪.
    (2)证明 由题意得,要证g(x)>x2ln x,x>0,
    即证x3+ax2>x2ln x,即证x+a>ln x,
    令u(x)=x+a-ln x,x>0,
    可得u′(x)=1-=,x>0,
    当0-1,所以u(x)>0,
    故当a>-1时,对于任意x>0,g(x)>x2ln x.
    【典例2】已知函数f(x)=1-,g(x)=+-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
    (1)求a,b的值;
    (2)证明:当x≥1时,f(x)+g(x)≥.
    【解析】(1)解 因为f(x)=1-,x>0,
    所以f′(x)=,f′(1)=-1.
    因为g(x)=+-bx,
    所以g′(x)=---b.
    因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
    所以g(1)=1,且f′(1)·g′(1)=-1,
    所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,
    解得a=-1,b=-1.
    (2)证明 由(1)知,g(x)=-++x,
    则f(x)+g(x)≥⇔1---+x≥0.
    令h(x)=1---+x(x≥1),
    则h(1)=0,
    h′(x)=+++1=++1.
    因为x≥1,所以h′(x)=++1>0,
    所以h(x)在[1,+∞)上单调递增,
    所以当x≥1时,h(x)≥h(1)=0,
    即1---+x≥0,
    所以当x≥1时,f(x)+g(x)≥.
    【典例3】已知函数f(x)=ln x+,a∈R.
    (1)讨论函数f(x)的单调性;
    (2)当a>0时,证明:f(x)≥.
    【解析】(1)解 f′(x)=-=(x>0).
    当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
    当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;
    若00,
    当x∈(1,+∞)时,g′(x)0时,g(x)≤h(x),即xf(x)-ex+2ex≤0.
    【题型六】放缩后构造函数证明不等式
    【典例1】已知函数f(x)=aln(x-1)+,其中a为正实数.证明:当x>2时,f(x)0;当x∈(1,+∞)时,φ′(x)2时,ln(x-1)0,
    ∴aln(x-1)2,所以h′(x)>0恒成立,
    所以h(x)在(2,+∞)上单调递增,
    所以h(x)>h(2)=e2-4>0,
    所以当x>2时,f(x)0),
    f′(x)=ex-1-,
    k=f′(1)=0,
    又f(1)=0,
    ∴切点为(1,0).
    ∴切线方程为y-0=0(x-1),即y=0.
    (2)证明 ∵a≥1,∴aex-1≥ex-1,
    ∴f(x)≥ex-1-ln x-1.
    方法一 令φ(x)=ex-1-ln x-1(x>0),
    ∴φ′(x)=ex-1-,
    令h(x)=ex-1-,
    ∴h′(x)=ex-1+>0,
    ∴φ′(x)在(0,+∞)上单调递增,又φ′(1)=0,
    ∴当x∈(0,1)时,φ′(x)0,
    ∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
    ∴φ(x)min=φ(1)=0,
    ∴φ(x)≥0,
    ∴f(x)≥φ(x)≥0,
    即证f(x)≥0.
    方法二 令g(x)=ex-x-1,
    ∴g′(x)=ex-1.
    当x∈(-∞,0)时,g′(x)0,
    ∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    ∴g(x)min=g(0)=0,
    故ex≥x+1,当且仅当x=0时取“=”.
    同理可证ln x≤x-1,当且仅当x=1时取“=”.
    由ex≥x+1⇒ex-1≥x(当且仅当x=1时取“=”),
    由x-1≥ln x⇒x≥ln x+1(当且仅当x=1时取“=”),
    ∴ex-1≥x≥ln x+1,
    即ex-1≥ln x+1,
    即ex-1-ln x-1≥0(当且仅当x=1时取“=”),
    即证f(x)≥0.
    方法三 f(x)=aex-1-ln x-1,定义域为(0,+∞),
    f′(x)=aex-1-,
    令k(x)=aex-1-,
    ∴k′(x)=aex-1+>0,
    ∴f′(x)在(0,+∞)上单调递增.
    又f′(1)=a-1≥0且x→0时,f′(x)→-∞,
    ∴∃x0∈(0,1]使f′(x0)=0,即aex0-1-=0,
    即aex0-1=,
    ∴当x∈(0,x0)时,f′(x)0,
    ∴f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
    ∴f(x)min=f(x0)=aex0-1-ln x0-1=-ln x0-1.
    令φ(x)=-ln x-1,x∈(0,1],
    ∴φ′(x)=---成立.
    【解析】(1)函数f(x)=xln x-ax的定义域为(0,+∞).
    当a=-1时,f(x)=xln x+x,f′(x)=ln x+2.
    由f′(x)=0,得x=.
    当x∈时,f′(x)时,f′(x)>0.
    所以f(x)在上单调递减,在上单调递增.
    因此f(x)在x=处取得最小值,即f(x)min=f=-.
    (2)证明:当x>0时,ln x+1>-等价于x(ln x+1)>-.
    由(1)知a=-1时,f(x)=xln x+x的最小值是-,当且仅当x=时取等号.
    设G(x)=-,x∈(0,+∞).
    则G′(x)=′=,易知G(x)max=G(1)=-,
    当且仅当x=1时取到,从而可知对一切x∈(0,+∞),都有f(x)>G(x),即ln x+1>-.
    【训练二】已知函数f(x)=λln x-e-x(λ∈R).
    (1)若函数f(x)是单调函数,求λ的取值范围;
    (2)求证:当01-,
    只需证ln x1-ln x2>1-,即证ln>1-.
    令t=,t∈(0,1),则只需证ln t>1-,
    令h(t)=ln t+-1,则h′(t)=-=,
    当02.
    由于f(x)的两个极值点x1,x2满足x2-ax+1=0,
    所以x1x2=1,不妨设x11.
    由于=--1+a
    =-2+a=-2+a,
    所以0,得>1,所以ln >,
    化简得ln b-ln a>,
    所以0).
    当00时,证明:f(x)≥.
    【解析】(1)f′(x)=-=(x>0).
    当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
    当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;
    若00,f(x)在(0,+∞)上单调递增;
    ②若a>0,则当0时,f′(x)0,所以只需证f(x)≤-2e,当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
    所以f(x)max=f(1)=-e.
    记g(x)=-2e(x>0),
    则g′(x)=,
    所以当00时,f(x)≤g(x),即f(x)≤-2e,
    即xf(x)-ex+2ex≤0.
    5. 已知函数f(x)=ax-ln x-1.
    (1)若f(x)≥0恒成立,求a的最小值;
    (2)证明:+x+ln x-1≥0.
    【解析】(1)由题意知x>0,
    所以f(x)≥0等价于a≥.
    令g(x)=,则g′(x)=,
    所以当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)0,
    所以当x∈(-1,+∞)时,g(x)单调递增,
    即f′(x)单调递增,又因为f′(1)=0,
    所以当x∈(-1,1)时,f′(x)0,
    所以f(x)在(-∞,1)上单调递减,
    在(1,+∞)上单调递增.
    所以f(x)≥f(1)=0.
    7. 设a为实数,函数f(x)=ex-2x+2a,x∈R.
    (1)求f(x)的单调区间与极值;
    (2)求证:当a>ln 2-1且x>0时,ex>x2-2ax+1.
    【解析】(1)解 由f(x)=ex-2x+2a,x∈R,得f′(x)=ex-2,x∈R,令f′(x)=0,得x=ln 2.
    于是当x变化时,f′(x),f(x)的变化情况如下表:
    x
    (-∞,ln 2)
    ln 2
    (ln 2,+∞)
    f′(x)

    0

    f(x)
    ↘
    2(1-ln 2+a)


    故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞).
    f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=2(1-ln 2+a),无极大值.
    (2)证明 设g(x)=ex-x2+2ax-1,x∈R.于是g′(x)=ex-2x+2a,x∈R.
    由(1)知当a>ln 2-1时,g′(x)的最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,
    所以g(x)在R内单调递增.
    于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
    又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
    即ex-x2+2ax-1>0,故ex>x2-2ax+1.
    8. 已知函数f(x)=eln x-ax(a∈R).
    (1)讨论f(x)的单调性;
    (2)当a=e时,证明:xf(x)-ex+2ex≤0.
    【解析】(1)解 f′(x)=-a(x>0).
    ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
    ②若a>0,则当0时,f′(x)0,所以只需证f(x)≤-2e,
    当a=e时,由(1)知,f(x)在(0,1)上单调递增,
    在(1,+∞)上单调递减.所以f(x)max=f(1)=-e,
    记g(x)=-2e(x>0),则g′(x)=,
    所以当00时,f(x)≤g(x),
    即f(x)≤-2e,即xf(x)-ex+2ex≤0.
    9. 已知函数f(x)=(a∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=.
    (1)求实数a的值,并求f(x)的单调区间;
    (2)求证:当x>0时,f(x)≤x-1.
    【解析】(1)解 ∵f(x)=,
    ∴f′(x)=,∴f′(e)=,
    又曲线y=f(x)在点(e,f(e))处的切线方程为y=,
    则f′(e)=0,即a=0,
    ∴f′(x)=,
    令f′(x)>0,得1-ln x>0,即01时,求证:f(x)>3(x-1).
    【解析】(1)因为f(x)=ax+xln x,
    所以f′(x)=a+ln x+1,
    因为函数f(x)在x=e-2处取得极小值,
    所以f′(e-2)=0,即a+ln e-2+1=0,
    所以a=1,所以f′(x)=ln x+2.
    当f′(x)>0时,x>e-2;
    当f′(x)e;由g′(x)3(x-1).
    11. 已知f(x)=xln x.
    (1)求函数f(x)的极值;
    (2)证明:对一切x∈(0,+∞),都有ln x>-成立.
    【解析】(1)解 由f(x)=xln x,x>0,
    得f′(x)=ln x+1,令f′(x)=0,得x=.
    当x∈时,f′(x)0,f(x)单调递增.
    所以当x=时,f(x)取得极小值,
    f(x)极小值=f =-,无极大值.
    (2)证明 问题等价于证明
    xln x>-(x∈(0,+∞)).
    由(1)可知f(x)=xln x(x∈(0,+∞))的最小值是-,当且仅当x=时取到.
    设m(x)=-(x∈(0,+∞)),
    则m′(x)=,由m′(x)1时,m(x)单调递减;由m′(x)>0得00恒成立.
    【解析】(1)解 f(x)的定义域为(0,+∞),
    f′(x)=-a=,
    当a≤0时,f′(x)>0,
    ∴f(x)在(0,+∞)上单调递增,
    当a>0时,令f′(x)=0,得x=,
    ∴x∈时,f′(x)>0;
    x∈时,f′(x)0,即证ex-2>ln x,
    令φ(x)=ex-x-1,∴φ′(x)=ex-1.
    令φ′(x)=0,得x=0,
    ∴当x∈(-∞,0)时,φ′(x)0,
    ∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    ∴φ(x)min=φ(0)=0,
    即ex-x-1≥0,即ex≥x+1,当且仅当x=0时取“=”.
    同理可证ln x≤x-1,
    当且仅当x=1时取“=”.
    由ex≥x+1(当且仅当x=0时取“=”),
    可得ex-2≥x-1(当且仅当x=2时取“=”),
    又x-1≥ln x,当且仅当x=1时取“=”,
    ∴ex-2≥x-1≥ln x且两等号不能同时成立,
    故ex-2>ln x.即证原不等式成立.
    13. 已知函数f(x)=ln x-.
    (1)若a=1,求f(x)的单调区间;
    (2)若a=0,x∈(0,1),证明:x2-ln x,
    令φ(x)=ex-x-1,∴φ′(x)=ex-1.
    令φ′(x)=0,得x=0,∴x∈(-∞,0)时,φ′(x)0,
    ∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    ∴φ(x)min=φ(0)=0,
    即ex-x-1≥0,即ex≥x+1,当且仅当x=0时取“=”.
    同理可证ln x≤x-1,当且仅当x=1时取“=”.
    由ex≥x+1(当且仅当x=0时取“=”),
    可得ex-2≥x-1(当且仅当x=2时取“=”),
    又ln x≤x-1,即x-1≥ln x,当且仅当x=1时取“=”,
    所以ex-2≥x-1≥ln x且两等号不能同时成立,
    故ex-2>ln x.即证原不等式成立.
    方法二 令φ(x)=ex-e2ln x,φ(x)的定义域为(0,+∞),
    φ′(x)=ex-,令h(x)=ex-,
    ∴h′(x)=ex+>0,
    ∴φ′(x)在(0,+∞)上单调递增.
    又φ′(1)=e-e20,
    故∃x0∈(1,2),使φ′(x0)=0,
    即ex0-=0,
    即ex0=,
    ∴当x∈(0,x0)时,φ′(x)0,
    ∴φ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
    ∴φ(x)min=φ(x0)=ex0-e2ln x0=-e2ln x0=-e2lne2ex0=-e2(2-x0)=e2=e2·>0,
    故φ(x)>0,即ex-e2ln x>0,即证原不等式成立.



    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题22导数隐零点问题(Word版附解析):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题22导数隐零点问题(Word版附解析),共27页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(Word版附解析):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(Word版附解析),共33页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(Word版附解析):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(Word版附解析),共24页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map