所属成套资源:2024年新高考数学一轮复习题型归类与强化测试专题汇总(Word版附解析)
2024年新高考数学一轮复习题型归类与强化测试专题16利用导数研究函数的单调性(Word版附解析)
展开
这是一份2024年新高考数学一轮复习题型归类与强化测试专题16利用导数研究函数的单调性(Word版附解析),共25页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
专题16利用导数研究函数的单调性
知识梳理
考纲要求
考点预测
常用结论
方法技巧
题型归类
题型一:不含参数的函数的单调性
题型二:含参数的函数的单调性
题型三:比较大小或解不等式
题型四:根据函数的单调性求参数的范围
培优训练
训练一:
训练二:
训练三:
训练四:
训练五:
训练六:
强化测试
单选题:共8题
多选题:共4题
填空题:共4题
解答题:共6题
一、【知识梳理】
【考纲要求】
1.结合实例,借助几何直观了解函数的单调性与导数的关系.
2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
【考点预测】
1.函数的单调性与导数的关系
条件
恒有
结论
函数y=f(x)在区间(a,b)上可导
f′(x)>0
f(x)在(a,b)上单调递增
f′(x)<0
f(x)在(a,b)上单调递减
f′(x)=0
f(x)在(a,b)上是常数函数
2.利用导数判断函数单调性的步骤
第1步,确定函数的定义域;
第2步,求出导函数f′(x)的零点;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.
【常用结论】
1.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.
2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.
【方法技巧】
1.确定函数单调区间的步骤:
(1)确定函数f(x)的定义域;
(2)求f′(x);
(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;
(4)解不等式f′(x)0),
令f′(x)=0,得x=1,
∴当x∈(0,1)时,f′(x)0,f(x)单调递增.
故选A.
【典例2】若函数f(x)=,则函数f(x)的单调递减区间为________.
【解析】f(x)的定义域为(0,+∞),
f′(x)=,
令φ(x)=-ln x-1(x>0),
φ′(x)=--0,
当x∈(1,+∞)时,φ(x)f(1)>f
D.f >f >f(1)
【解析】因为f(x)=xsin x,所以f(-x)=(-x)·sin(-x)=xsin x=f(x),所以函数f(x)是偶函数,所以f =f .又当x∈时,f′(x)=sin x+xcos x>0,所以函数f(x)在上单调递增,所以f f .故选A.
【典例2】已知函数f(x)=ex-e-x-2x+1,则不等式f(2x-3)>1的解集为________.
【解析】f(x)=ex-e-x-2x+1,定义域为R,
f′(x)=ex+e-x-2≥2-2=0,
当且仅当x=0时取“=”,
∴f(x)在R上单调递增,
又f(0)=1,
∴原不等式可化为f(2x-3)>f(0),
即2x-3>0,解得x>,
∴原不等式的解集为.
【典例3】设函数f(x)=ex+x-2,g(x)=ln x+x2-3,若实数a,b满足f(a)=0,g(b)=0,则( )
A.g(a)f(2),故选D.
6. 若函数f(x)=2x3-3mx2+6x在区间(1,+∞)上为增函数,则实数m的取值范围是( )
A.(-∞,1] B.(-∞,1)
C.(-∞,2] D.(-∞,2)
【解析】因为f′(x)=6(x2-mx+1),且函数f(x)在区间(1,+∞)上是增函数,所以f′(x)=6(x2-mx+1)≥0在(1,+∞)上恒成立,即x2-mx+1≥0在(1,+∞)上恒成立,所以m≤=x+在(1,+∞)上恒成立,即m≤(x∈(1,+∞)),因为当x∈(1,+∞)时,x+>2,所以m≤2.故选C.
7. 函数f(x)的定义域为R.f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
【解析】由f(x)>2x+4,得f(x)-2x-4>0.设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2.
因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,选B.
8. 设f(x),g(x)是定义在R上的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)f(b)g(x) D.f(x)g(x)>f(a)g(a)
【解析】令F(x)=,则F′(x)=0,g(x)>0,所以f(x)g(b)>f(b)g(x).故选C.
【多选题】
9. 若函数f(x)=ax3+3x2-x+1恰好有三个单调区间,则实数a的取值可以是( )
A.-3 B.-1 C.0 D.
【解析】依题意知,f′(x)=3ax2+6x-1有两个不相等的零点,故
解得a>-3且a≠0.故选BD.
10. 若函数 g(x)=exf(x)(e=2.718…,e为自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数不具有M性质的为( )
A.f(x)= B.f(x)=x2+1
C.f(x)=sin x D.f(x)=x
【解析】对于A,f(x)=,则g(x)=,g′(x)=,当x0,
∴g(x)在(-∞,0),(0,1)上单调递减,在(1,+∞)上单调递增;
对于B,f(x)=x2+1,则g(x)=exf(x)=ex(x2+1),
g′(x)=ex(x2+1)+2xex=ex(x+1)2>0在实数集R上恒成立,
∴g(x)=exf(x)在定义域R上是增函数;
对于C,f(x)=sin x,则g(x)=exsin x,g′(x)=ex(sin x+cos x)=exsin,显然g(x)不单调;
对于D,f(x)=x,则g(x)=xex,则g′(x)=(x+1)ex.当x0时,f′(x)>0.
所以f(x)在(0,+∞)上是增函数.
答案:增
15. 若函数f(x)=-x3+x2+2ax在上存在单调递增区间,则a的取值范围是________.
【解析】对f(x)求导,得f′(x)=-x2+x+2a=-++2a.
由题意知,f′(x)>0在上有解,
当x∈时,f′(x)的最大值为f′=+2a.
令+2a>0,解得a>-,
所以a的取值范围是.
答案:
16. 已知函数f(x)=-x2-3x+4ln x在(t,t+1)上不单调,则实数t的取值范围是________.
【解析】因为函数f(x)=-x2-3x+4ln x(x>0),
所以f′(x)=-x-3+,
因为函数f(x)=-x2-3x+4ln x在(t,t+1)上不单调,
所以f′(x)=-x-3+在(t,t+1)上有变号零点,
所以=0在(t,t+1)上有解,
所以x2+3x-4=0在(t,t+1)上有解,
由x2+3x-4=0得x=1或x=-4(舍去),
所以1∈(t,t+1),所以t∈(0,1),
故实数t的取值范围是(0,1).
答案:(0,1)
【解答题】
17. 已知函数f(x)=x3+ax2-x+c,且a=f′.
(1)求a的值;
(2)求函数f(x)的单调区间.
【解析】(1)由f(x)=x3+ax2-x+c,
得f′(x)=3x2+2ax-1.
当x=时,得a=f′=3×+2a×-1,
解得a=-1.
(2)由(1)可知f(x)=x3-x2-x+c,
则f′(x)=3x2-2x-1=3(x-1),
令f′(x)>0,解得x>1或x
相关试卷
这是一份备战2024年高考数学第一轮题型归纳与解题 考点16 利用导数研究函数的单调性6种常见考法归类(原卷版+解析),共74页。试卷主要包含了利用导数求函数的单调区间,含参数的函数的单调性,比较大小,解抽象不等式,函数图象与导数图象的应用等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(Word版附解析),共33页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(Word版附解析),共24页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。