所属成套资源:新高考数学一轮复习课时过关练习 (含解析)
新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第2节 函数的单调性与最大(小)值 (含解析)
展开
这是一份新高考数学一轮复习课时过关练习第02章 函数与基本初等函数第2节 函数的单调性与最大(小)值 (含解析),共17页。试卷主要包含了函数的最值等内容,欢迎下载使用。
第2节 函数的单调性与最大(小)值
考试要求 1.借助函数图象,会用数学符号语言表达函数的单调性、最值,理解其实际意义.2.会运用基本初等函数的图象分析函数的性质.
1.函数的单调性
(1)单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D
当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增,特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数
当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减,特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数
图象描述
自左向右看图象是上升的
自左向右看图象是下降的
(2)单调区间的定义
如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
条件
(1)∀x∈I,都有f(x)≤M;
(2)∃x0∈I,使得f(x0)=M
(1)∀x∈I,都有f(x)≥M;
(2)∃x0∈I,使得f(x0)=M
结论
M为最大值
M为最小值
1.有关单调性的常用结论
在公共定义域内,增函数+增函数=增函数;减函数+减函数=减函数;增函数-减函数=增函数;减函数-增函数=减函数.
2.函数y=f(x)(f(x)>0或f(x)
相关试卷
这是一份备战2024高考一轮复习数学(理) 课时验收评价(五) 函数的单调性与最大(小)值,共4页。试卷主要包含了点全面广强基训练,重点难点培优训练等内容,欢迎下载使用。
这是一份新高考高考数学一轮复习巩固练习2.3第08练《函数的单调性与最大(小)值》(2份打包,解析版+原卷版),文件包含新高考高考数学一轮复习巩固练习23第08练《函数的单调性与最大小值》解析版doc、新高考高考数学一轮复习巩固练习23第08练《函数的单调性与最大小值》原卷版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份2023届高考一轮复习加练必刷题第8练 函数的单调性与最大(小)值【解析版】,共6页。试卷主要包含了函数f=的单调递增区间是等内容,欢迎下载使用。