终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析)01
    新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析)02
    新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析)03
    还剩10页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析)

    展开
    这是一份新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析),共13页。试卷主要包含了已知函数f=ex-a等内容,欢迎下载使用。

    第二课时 利用导数研究函数的零点

     题型一 判断、证明或讨论零点的个数
    例1 已知函数f(x)=xsin x-.
    判断函数f(x)在(0,π)内的零点个数,并加以证明.
    解 f(x)在(0,π)内有且只有两个零点.证明如下:
    ∵f′(x)=sin x+xcos x,当x∈时,f′(x)>0,
    f(x)=xsin x-,从而有f(0)=-<0,f=>0,
    又f(x)在上的图象是连续不间断的.
    所以f(x)在内至少存在一个零点.
    又f(x)在上单调递增,故f(x)在内有且只有一个零点.
    当x∈时,令g(x)=f′(x)=sin x+xcos x.
    由g=1>0,g(π)=-π<0,且g(x)在上的图象是连续不间断的,
    故存在m∈,
    使得g(m)=0.
    由g′(x)=2cos x-xsin x,
    知x∈时,有g′(x)<0,
    从而g(x)在内单调递减.
    当x∈时,g(x)>g(m)=0,即f′(x)>0,从而f(x)在内单调递增,故当x∈时,f(x)≥f=>0,故f(x)在上无零点;
    当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(m,π)内单调递减.
    又f(m)>0,f(π)<0,且f(x)在[m,π]上的图象是连续不断的,从而f(x)在(m,π)内有且仅有一个零点.
    综上所述,f(x)在(0,π)内有且只有两个零点.
    感悟提升 利用导数求函数的零点常用方法
    (1)构造函数g(x),利用导数研究g(x)的性质,结合g(x)的图象,判断函数零点的个数.
    (2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有多少个零点.
    训练1 已知函数f(x)=x3-a(x2+x+1).
    (1)若a=3,求f(x)的单调区间;
    (2)证明:f(x)只有一个零点.
    (1)解 当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.
    令f′(x)=0,解得x=3-2或x=3+2.
    当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;
    当x∈(3-2,3+2)时,f′(x)<0.
    故f(x)在(-∞,3-2),(3+2,+∞)单调递增,在(3-2,3+2)单调递减.
    (2)证明 由于x2+x+1>0,所以f(x)=0等价于-3a=0.
    设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)单调递增.
    故g(x)至多有一个零点,从而f(x)至多有一个零点.
    又f(3a-1)=-6a2+2a-
    =-6-<0,
    f(3a+1)=>0,故f(x)有一个零点.
    综上,f(x)只有一个零点.
     题型二 根据零点情况求参数范围
    例2 已知函数f(x)=2ln x-x2+ax(a∈R).
    (1)当a=2时,求f(x)的图象在x=1处的切线方程;
    (2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围.
    解 (1)当a=2时,f(x)=2ln x-x2+2x,
    则f′(x)=-2x+2,切点坐标为(1,1),则切线的斜率k=f′(1)=2,则函数f(x)的图象在x=1处的切线方程为y-1=2(x-1),即y=2x-1.
    (2)g(x)=f(x)-ax+m=2ln x-x2+m,
    则g′(x)=-2x=,
    ∵x∈,
    ∴由g′(x)=0,得x=1.
    当≤x<1时,g′(x)>0,函数g(x)单调递增,
    当1<x≤e时,g′(x)<0,函数g(x)单调递减,
    故当x=1时,函数g(x)取得极大值g(1)=m-1,
    又g=m-2-,g(e)=m+2-e2,
    且g>g(e),
    ∴g(x)=f(x)-ax+m在上有两个零点需满足条件
    解得1<m≤2+.
    故实数m的取值范围是.
    感悟提升 1.函数零点个数可转化为两个函数图象的交点个数,根据图象的几何直观求解.
    2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点判断函数的大致图象,进而求出参数的取值范围.也可分离出参数,转化为两函数图象的交点情况.
    训练2 已知函数f(x)=ex+(a-e)x-ax2.
    (1)当a=0时,求函数f(x)的极值;
    (2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.
    解 (1)当a=0时,f(x)=ex-ex,
    则f′(x)=ex-e,f′(1)=0,
    当x<1时,f′(x)<0,f(x)单调递减;
    当x>1时,f′(x)>0,f(x)单调递增,
    所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.
    (2)由题意得f′(x)=ex-2ax+a-e,
    设g(x)=ex-2ax+a-e,
    则g′(x)=ex-2a.
    若a=0,由(1)知f(x)的极小值f(1)=0,故f(x)在区间(0,1)内没有零点.
    若a<0,则g′(x)=ex-2a>0,故函数g(x)在区间(0,1)内单调递增.
    又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.
    故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;
    当x∈(x0,1)时,f′(x)>0,f(x)单调递增.
    因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.
    若a>0,由(1)得当x∈(0,1)时,ex>ex.
    则f(x)=ex+(a-e)x-ax2>ex+(a-e)x-ax2=a(x-x2)>0,
    此时函数f(x)在区间(0,1)内没有零点.
    综上,实数a的取值范围为(-∞,0).
     题型三 与函数零点相关的综合问题
    例3 设函数f(x)=e2x-aln x.
    (1)讨论f(x)的导函数f′(x)零点的个数;
    (2)证明:当a>0时,f(x)≥2a+aln .
    (1)解 f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
    当a≤0时,f′(x)>0,f′(x)没有零点;
    当a>0时,因为y=e2x单调递增,y=-单调递增,
    所以f′(x)在(0,+∞)上单调递增.
    又f′(a)>0,当b满足0 (讨论a≥1或a<1来检验,
    ①当a≥1时,则0 f′(b)=2e2b-<2e-4a<2e-4<0;
    ②当a<1时,则0 故当a>0时,f′(x)存在唯一零点.
    (2)证明 由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,
    当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.
    故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
    所以当x=x0时,f(x)取得最小值,最小值为f(x0).
    由于2e2x0-=0,
    所以f(x0)=+2ax0+aln ≥2a+aln .
    故当a>0时,f(x)≥2a+aln .
    感悟提升 1.在(1)问中,当a>0时,f′(x)在(0,+∞)上单调递增,从而f′(x)在(0,+∞)上至多有一个零点,问题的关键是找到b,使f′(b)<0.
    2.由(1)问知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a+aln .
    训练3 (2020·全国Ⅲ卷)设函数f(x)=x3+bx+c,曲线y=f(x)在点处的切线与y轴垂直.
    (1)求b;
    (2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.
    (1)解 f′(x)=3x2+b.
    依题意得f′=0,即+b=0,
    故b=-.
    (2)证明 由(1)知f(x)=x3-x+c,f′(x)=3x2-.令f′(x)=0,解得x=-或x=.
    f′(x)与f(x)的情况为:
    x





    f′(x)

    0

    0

    f(x)

    c+

    c-

    因为f(1)=f=c+,
    所以当c<-时,f(x)只有大于1的零点.
    因为f(-1)=f=c-,
    所以当c>时,f(x)只有小于-1的零点.
    由题设可知-≤c≤.
    当c=-时,f(x)只有两个零点-和1.
    当c=时,f(x)只有两个零点-1和.
    当- x3∈.
    综上,若f(x)有一个绝对值不大于1的零点,则f(x)所有零点的绝对值都不大于1.
    隐零点问题
    在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫做隐零点;若x0容易求出,就叫做显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.
    例 设函数f(x)=ex-ax-2.
    (1)求f(x)的单调区间;
    (2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.
    解 (1)f(x)的定义域为R,f′(x)=ex-a.
    当a≤0时,f′(x)>0恒成立,
    所以f(x)单调增区间为(-∞,+∞),无单调减区间.
    当a>0时,令f′(x)<0,得x 令f′(x)>0,得x>ln a,
    所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).
    (2)由题设可得(x-k)(ex-1)+x+1>0,
    即k0)恒成立,
    令g(x)=+x(x>0),
    得g′(x)=+1
    =(x>0).
    由(1)的结论可知,函数h(x)=ex-x-2(x>0)是增函数.
    又因为h(1)<0,h(2)>0,
    所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).
    当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,
    所以g(x)min=g(α)=+α.
    又h(α)=eα-α-2=0,
    所以eα=α+2且α∈(1,2),
    则g(x)min=g(α)=1+α∈(2,3),
    所以k的最大值为2.
    极限思想在解决零点问题中的应用
    解决函数的零点问题,往往要转化为函数的图象与x轴的交点问题,故需判断函数图象的变化趋势,极限的思想方法是解决问题的有力工具.
    例 (1)已知函数f(x)=ax-x2(a>1)有三个不同的零点,求实数a的取值范围.
    解 令f(x)=ax-x2=0,可得ax=x2.
    ①当x<0时,函数y=ax与y=x2的图象有一个交点;
    ②当x>0时,两边同时取自然对数得xln a=2ln x,
    即ln a=,由题意得函数y=ln a与g(x)=的图象在(0,+∞)上有两个不同的交点,g′(x)=,令g′(x)>0,解得0<x<e,则g(x)在(0,e)上单调递增;令g′(x)<0,解得x>e,则g(x)在(e,+∞)上单调递减,则g(x)max=g(e)=,当x→+∞时,g(x)→0且g(x)>0;
    当x→0时,g(x)→-∞,则有0<ln a<,解得1<a<e.综上,a的取值范围是.
    (2)已知函数f(x)=ex(x+1),若函数g(x)=f(x)-3ex-m有两个零点,求实数m的取值范围.
    解 g(x)=f(x)-3ex-m=ex(x-2)-m,
    函数g(x)=ex(x-2)-m有两个零点,相当于函数u(x)=ex·(x-2)的图象与直线y=m有两个交点,u′(x)=ex·(x-2)+ex=ex(x-1),
    当x∈(-∞,1)时,u′(x)<0,
    ∴u(x)在(-∞,1)上单调递减;
    当x∈(1,+∞)时,u′(x)>0,
    ∴u(x)在(1,+∞)上单调递增,
    ∴当x=1时,u(x)取得极小值u(1)=-e.
    又当x→+∞时,u(x)→+∞,
    当x<2时,u(x)<0,
    ∴实数m的取值范围为{m|-e<m<0}.

    1.(2021·安庆一模)函数f(x)=ex-2ax-a.
    (1)讨论函数的极值;
    (2)当a>0时,求函数f(x)的零点个数.
    解 (1)由题意,函数f(x)=ex-2ax-a,
    可得f′(x)=ex-2a,
    当a≤0时,f′(x)=ex-2a>0,f(x)在R上为单调增函数,此时无极值;
    当a>0时,令f′(x)=ex-2a>0,解得x>ln(2a),
    所以f(x)在(ln(2a),+∞)上为单调增函数;
    令f′(x)=ex-2a<0,解得x<ln(2a),f(x)在(-∞,ln(2a))上为单调减函数,
    所以当x=ln(2a)时,函数f(x)取得极小值f(x)极小值=f(ln(2a))=a-2aln(2a),无极大值.
    综上所述,
    当a≤0时,f(x)无极值,
    当a>0时,f极小值=f(ln(2a))
    =a-2aln(2a),无极大值.
    (2)由(1)知当a>0,f(x)在(ln(2a),+∞)上为单调增函数,在(-∞,ln(2a))上为单调减函数,且f(x)极小值=a-2aln(2a),
    又由f(x)=ex-a(2x+1),
    若x→-∞时,f(x)→+∞;
    若x→+∞时,f(x)→+∞;
    当a-2aln(2a)>0,即0<a<时,f(x)无零点;
    当a-2aln(2a)=0,即a=时,f(x)有1个零点;
    当a-2aln(2a)<0,即a>时,f(x)有2个零点.
    综上,当0<a<时,f(x)无零点;
    当a=时,f(x)有1个零点;
    当a>时, f(x)有2个零点.
    2.已知函数f(x)=(2-x)ex,g(x)=a(x-1)2.
    (1)求曲线y=f(x)在点(0,f(0))处的切线方程;
    (2)讨论y=f(x)和y=g(x)的图象的交点个数.
    解 (1)f′(x)=-ex+(2-x)ex=(1-x)ex,则f′(0)=1,又f(0)=2,所以切线方程为y=x+2,即x-y+2=0.
    (2)令F(x)=g(x)-f(x)=a(x-1)2+(x-2)ex,则y=f(x)和y=g(x)的图象的交点个数即F(x)的零点个数.
    F′(x)=(x-1)(ex+2a).
    ①当a=0时,F(x)=(x-2)ex,F(x)只有一个零点.
    ②当a<0时,由F′(x)=0得x=1或x=ln(-2a).
    若a≥-,则ln(-2a)≤1,
    故当x∈(1,+∞)时,F′(x)>0,
    因此F(x)在(1,+∞)上单调递增.
    当x→+∞时,F(x)>0;
    又当x≤1时,F(x)<0,
    所以F(x)只有一个零点.
    若a<-,则ln(-2a)>1,
    故当x∈(1,ln(-2a))时,F′(x)<0;
    当x∈(ln(-2a),+∞)时,F′(x)>0.
    因此F(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.
    当x→+∞时,F(x)>0;
    又当x≤1时,F(x)<0,
    所以F(x)只有一个零点.
    ③若a>0时,若x∈(-∞,1),则F′(x)<0;
    若x∈(1,+∞),则F′(x)>0,
    所以F(x)在(-∞,1)上单调递减,
    在(1,+∞)上单调递增.
    F(1)=-e,F(2)=a,
    取b满足b<0,且b<ln .
    则F(b)>(b-2)+a(b-1)2
    =a>0,
    所以F(x)有两个零点.
    综上,当a≤0时,y=f(x)和y=g(x)的图象的交点个数为1;当a>0时,y=f(x)和y=g(x)的图象的交点个数为2.
    3.(2021·青岛三模)已知函数f(x)=x3-3kx+2,k∈R.
    (1)若x=-2是函数f(x)的极值点,求k的值及f(x)的单调区间;
    (2)若函数f(x)在[0,2]上有且仅有2个零点,求f(x)在[0,2]上的最大值g(k).
    解 (1)由题意知,f(x)=x3-3kx+2的定义域为R,f′(x)=3x2-3k,
    ∴f′(-2)=12-3k=0,解得k=4,
    ∵f′(x)=3x2-12=3(x+2)(x-2),
    ∵x∈(-2,2)时,f′(x)<0;x∈(-∞,-2)∪(2,+∞)时,f′(x)>0.
    ∴f(x)的单调增区间是(-∞,-2)和(2,+∞),单调减区间为(-2,2).
    (2)由(1)知,f′(x)=3(x2-k),
    ①当k≤0时,f′(x)=3(x2-k)≥0恒成立,
    ∴f(x)在[0,2]上单调递增,最多只有1个零点,不符合条件,舍去.
    ②当k≥4时,当x∈[0,2]时,
    f′(x)=3(x2-k)≤0恒成立,
    ∴f(x)在[0,2]上单调递减,最多只有1个零点,不符合条件,舍去.
    ③当0<k<4时,令f′(x)=3(x2-k)<0得0<x<,
    ∴f(x)在(0,)上递减,在(,2)上递增,
    要使函数f(x)在区间[0,2]上有且仅有2个零点,必有
    即解得1<k≤,
    当f(2)-f(0)≥0,即1<k≤时,
    由f(x)的单调性可知
    f(x)max=f(2)=10-6k,
    同理,当f(2)-f(0)<0,即<k≤时,f(x)max=f(0)=2,
    ∴f(x)在[0,2]上的最大值
    g(k)=
    4.(2020·全国Ⅰ卷)已知函数f(x)=ex-a(x+2).
    (1)当a=1时,讨论f(x)的单调性;
    (2)若f(x)有两个零点,求a的取值范围.
    解 (1)当a=1时,f(x)=ex-x-2,x∈R,则f′(x)=ex-1.
    当x<0时,f′(x)<0;当x>0时,f′(x)>0.
    所以f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.
    (2)f′(x)=ex-a.
    ①当a≤0时,f′(x)>0,
    所以f(x)在(-∞,+∞)单调递增.
    故f(x)至多存在一个零点,不合题意.
    ②当a>0时,由f′(x)=0,可得x=ln a.
    当x∈(-∞,ln a)时,f′(x)<0;
    当x∈(ln a,+∞)时,f′(x)>0.
    所以f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.
    故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).
    (ⅰ)若0 (ⅱ)若a>,则f(ln a)<0.
    因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)存在唯一零点.
    由(1)知,当x>2时,ex-x-2>0.
    所以当x>4且x>2ln(2a)时,f(x)=e·e-a(x+2)>eln(2a)·-a(x+2)=2a>0.
    故f(x)在(ln a,+∞)存在唯一零点.
    从而f(x)在(-∞,+∞)有两个零点.
    综上,a的取值范围是.

    相关试卷

    新高考数学二轮复习导数培优专题14 利用导数研究函数零点问题(含解析): 这是一份新高考数学二轮复习导数培优专题14 利用导数研究函数零点问题(含解析),共35页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用精品巩固练习: 这是一份高中数学人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用精品巩固练习,共11页。试卷主要包含了函数有等内容,欢迎下载使用。

    (新高考)高考数学一轮复习第19讲《导数的应用——利用导数研究函数零点问题》达标检测(解析版): 这是一份(新高考)高考数学一轮复习第19讲《导数的应用——利用导数研究函数零点问题》达标检测(解析版),共18页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课时过关练习第03章 导数的综合问题导数的综合问题第2课时 利用导数研究函数的零点 (含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map