搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习课时过关练习第06章 数列第4节 数列求和 (含解析)

    新高考数学一轮复习课时过关练习第06章 数列第4节 数列求和 (含解析)第1页
    新高考数学一轮复习课时过关练习第06章 数列第4节 数列求和 (含解析)第2页
    新高考数学一轮复习课时过关练习第06章 数列第4节 数列求和 (含解析)第3页
    还剩21页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课时过关练习第06章 数列第4节 数列求和 (含解析)

    展开

    这是一份新高考数学一轮复习课时过关练习第06章 数列第4节 数列求和 (含解析),共24页。试卷主要包含了数列求和的几种常用方法,裂项求和常用的三种变形,已知数列{an}等内容,欢迎下载使用。
    第4节 数列求和
    考试要求 1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列,非等比数列求和的几种常见方法.


    1.特殊数列的求和公式
    (1)等差数列的前n项和公式:
    Sn==na1+d.
    (2)等比数列的前n项和公式:
    Sn=
    2.数列求和的几种常用方法
    (1)分组转化法
    把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
    (2)裂项相消法
    把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
    (3)错位相减法
    如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
    (4)倒序相加法
    如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.

    1.1+2+3+4+…+n=.
    2.12+22+…+n2=.
    3.裂项求和常用的三种变形
    (1)=-.
    (2)=.
    (3)=-.
    4.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

    1.思考辨析(在括号内打“√”或“×”)
    (1)若数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.(  )
    (2)当n≥2时,=(-).(  )
    (3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即可根据错位相减法求和.(  )
    (4)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,则数列{an}的通项公式是an=.(  )
    答案 (1)√ (2)√ (3)× (4)√
    解析 (3)要分a=0或a=1或a≠0且a≠1讨论求解.
    2.(2022·烟台模拟)设数列{an}的前n项和为Sn,若an=,则S99=(  )
    A.7 B.8 C.9 D.10
    答案 C
    解析 an==-,
    所以S99=(-1)+(-)+…+(-)=-1=9.
    3.(2022·石家庄检测)数列1,3,5,7,…,(2n-1)+…的前n项和Sn的值等于(  )
    A.n2+1- B.2n2-n+1-
    C.n2+1- D.n2-n+1-
    答案 A
    解析 Sn=[1+3+…+(2n-1)]+=+
    =n2+1-.
    4.(易错题)数列{(n+3)·2n-1}前20项的和为________.
    答案 22·220-2
    解析 S20=4·1+5·21+6·22+…+23·219,2S20=4·2+5·22+6·23+…+23·220,
    两式相减,得-S20=4+2+22+…+219-23·220=4+-23·220=-22·220+2.
    故S20=22·220-2.
    5.(2021·河北“五个一”名校质检)若f(x)+f(1-x)=4,an=f(0)+f+…+f+f(1)(n∈N*),则数列{an}的通项公式为________.
    答案 an=2(n+1)
    解析 由f(x)+f(1-x)=4,
    可得f(0)+f(1)=4,…,
    f+f=4,
    所以2an=(f(0)+f(1))
    ++…+(f(1)+f(0))=4(n+1),即an=2(n+1).

     考点一 分组转化求和
    例1 已知等差数列{an}的前n项和为Sn,且关于x的不等式a1x2-S2x+2<0的解集为(1,2).
    (1)求数列{an}的通项公式;
    (2)若数列{bn}满足bn=a2n+2an-1,求数列{bn}的前n项和Tn.
    解 (1)设等差数列{an}的公差为d,
    因为关于x的不等式a1x2-S2x+2<0的解集为(1,2),
    所以=1+2=3.
    又S2=2a1+d,所以a1=d,
    易知=2,所以a1=1,d=1.
    所以数列{an}的通项公式为an=n.
    (2)由(1)可得,a2n=2n,2an=2n.
    因为bn=a2n+2an-1,所以bn=2n-1+2n,
    所以数列{bn}的前n项和Tn=(1+3+5+…+2n-1)+(2+22+23+…+2n)
    =+=n2+2n+1-2.
    感悟提升 1.若数列{cn}满足cn=an±bn,且{an},{bn}为等差或等比数列,可采用分组求和法求数列{cn}的前n项和.
    2.若数列{cn}满足cn=其中数列{an},{bn}是等比数列或等差数列,可采用分组求和法求{cn}的前n项和.
    训练1 已知数列{an}的通项公式是an=2·3n-1+(-1)n(ln 2-ln 3)+(-1)nnln 3,求其前n项和Sn.
    解 Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn]ln 3,
    所以当n为偶数时,
    Sn=2×+ln 3=3n+ln 3-1;
    当n为奇数时,
    Sn=2×-(ln 2-ln 3)+ln 3
    =3n-ln 3-ln 2-1.
    综上所述,
    Sn=
      考点二 裂项相消法求和
    例2 (2021·开原三模)给出以下三个条件:①4a3,3a4,2a5成等差数列;②∀n∈N*,点(n,Sn)均在函数y=2x-a的图象上,其中a为常数;③S3=7.请从这三个条件中任选一个将下面的题目补充完整,并求解.
    设{an}是一个公比为q(q>0,且q≠1)的等比数列,且它的首项a1=1,________.
    (1)求数列{an}的通项公式;
    (2)令bn=2log2an+1(n∈N*),证明:数列的前n项和Tn<.
    (1)解 选①进行作答.
    因为4a3,3a4,2a5成等差数列,
    所以6a4=4a3+2a5,
    即6a3·q=4a3+2a3q2,
    解得q=1(舍)或q=2,所以an=2n-1.
    选②进行作答.
    由题意得Sn=2n-a,
    因为a1=S1=2-a=1,所以a=1,
    所以Sn=2n-1,
    当n≥2时,Sn-1=2n-1-1,
    则an=Sn-Sn-1=2n-1,
    当n=1时,a1=1,符合上式,所以an=2n-1.
    选③作答.
    由S3=7,得a1+a2+a3=7,即a1+a1·q+a1·q2=7,解得q=2或q=-3,又因为q>0,所以q=2,所以an=2n-1.
    (2)证明 bn=2log22n-1+1=2n-1,n∈N*,
    则=
    =,
    所以Tn=

    =,
    因为n∈N*,所以1-<1,
    所以Tn<,得证.
    感悟提升 1.用裂项相消法求和时,要对通项进行变换,如:=(-),=(-),裂项后可以产生连续相互抵消的项.
    2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.
    训练2 (2022·聊城模拟)已知数列{an}的前n项和为Sn,且Sn=2an-a1(n∈N*),数列{bn}满足b1=6,bn=Sn++4(n∈N*).
    (1)求数列{an}的通项公式;
    (2)记数列的前n项和为Tn,证明:Tn<.
    (1)解 已知Sn=2an-a1,
    当n≥2时,Sn-1=2an-1-a1,
    两式相减得an=2an-1,n≥2,
    所以=2为常数,
    bn=Sn++4,
    令n=1,得6=a1++4,解得a1=1,
    所以数列{an}是公比为2,首项为1的等比数列,
    所以{an}的通项公式为an=2n-1.
    (2)证明 由Sn=2an-a1=2n-1,得bn=2n++3,
    则==-,
    所以Tn=++…+
    =-<.
     考点三 错位相减法求和
    例3 (2021·全国乙卷)设{an}是首项为1的等比数列,数列{bn}满足bn=.已知a1,3a2,9a3成等差数列.
    (1)求{an}和{bn}的通项公式;
    (2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn

    相关试卷

    新高考数学一轮复习课时过关练习第06章 数列第1节 数列的概念与简单表示法 (含解析):

    这是一份新高考数学一轮复习课时过关练习第06章 数列第1节 数列的概念与简单表示法 (含解析),共19页。试卷主要包含了数列的表示法,数列的通项公式,数列的递推公式,故选D等内容,欢迎下载使用。

    新高考数学一轮复习课时过关练习第06章 数列 高考重点突破课二 数列 (含解析):

    这是一份新高考数学一轮复习课时过关练习第06章 数列 高考重点突破课二 数列 (含解析),共13页。

    新高考数学一轮复习课时讲练 第6章 第4讲 数列求和 (含解析):

    这是一份新高考数学一轮复习课时讲练 第6章 第4讲 数列求和 (含解析),共17页。试卷主要包含了基本数列求和方法,一些常见数列的前n项和公式,数列求和的常用方法,已知数列{an}满足等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map