所属成套资源:新高考数学二轮复习 圆锥曲线-双曲线 专题训练(含解析)
新高考数学一轮复习课时过关练习第08章 平面解析几何第7节 直线与椭圆、双曲线 (含解析)
展开
这是一份新高考数学一轮复习课时过关练习第08章 平面解析几何第7节 直线与椭圆、双曲线 (含解析),共18页。试卷主要包含了设双曲线C,过双曲线C,已知F1,F2为椭圆C等内容,欢迎下载使用。
第7节 直线与椭圆、双曲线
考点一 直线与椭圆、双曲线的位置关系
例1 已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:
(1)有两个不重合的公共点;
(2)有且只有一个公共点;
(3)没有公共点.
解 将直线l的方程与椭圆C的方程联立,
得方程组
将①代入②,整理得9x2+8mx+2m2-4=0.③
方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.
(1)当Δ>0,即-3b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
①求椭圆C的方程;
②当△AMN的面积为时,求k的值.
解 ①由题意得解得b=.
所以椭圆C的方程为+=1.
②由消y得(1+2k2)x2-4k2x+2k2-4=0,显然Δ>0.
设点M,N的坐标分别为(x1,y1),(x2,y2),
则x1+x2=,x1x2=.
所以|MN|=
=.
又因为点A(2,0)到直线y=k(x-1)的距离d=,
所以△AMN的面积为S=|MN|·d=.
由=,解得k=±1.
考点三 直线与椭圆、双曲线的综合问题
例4 已知P点坐标为(0,-2),点A,B分别为椭圆E:+=1(a>b>0)的左、右顶点,直线BP交E于点Q,△ABP是等腰直角三角形,且=.
(1)求椭圆E的方程;
(2)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.
解 (1)由△ABP是等腰直角三角形,
得a=2,B(2,0).
设Q(x0,y0),则由=,
得
代入椭圆方程得b2=1,
所以椭圆E的方程为+y2=1.
(2)依题意得,直线l的斜率存在,方程设为y=kx-2.
联立
消去y并整理得(1+4k2)x2-16kx+12=0.(*)
因直线l与E有两个交点,即方程(*)有不等的两实根,
故Δ=(-16k)2-48(1+4k2)>0,
解得k2>.
设M(x1,y1),N(x2,y2),
由根与系数的关系得
因坐标原点O位于以MN为直径的圆外,
所以·>0,即x1x2+y1y2>0,
又由x1x2+y1y2=x1x2+(kx1-2)(kx2-2)
=(1+k2)x1x2-2k(x1+x2)+4
=(1+k2)·-2k·+4>0,
解得k2
相关试卷
这是一份新高考数学一轮复习课时过关练习第08章 平面解析几何第6节 双曲线 (含解析),共24页。试卷主要包含了双曲线的标准方程和几何性质,双曲线的焦点到渐近线的距离为b,焦点三角形的面积,已知双曲线C等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时过关练习第08章 平面解析几何第6节 双曲线 (含解析),共24页。试卷主要包含了双曲线的标准方程和几何性质,双曲线的焦点到渐近线的距离为b,焦点三角形的面积,已知双曲线C等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时过关练习第08章 平面解析几何第5节 椭圆 (含解析),共21页。试卷主要包含了椭圆的标准方程和几何性质,焦点弦等内容,欢迎下载使用。