高考数学二轮复习 专题04 立体几何(含解析)
展开
这是一份高考数学二轮复习 专题04 立体几何(含解析),共56页。
专题04 立体几何
1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )
A.8 B.12 C.16 D.20
【答案】B
【解析】
【分析】
由三视图还原几何体,再由棱柱的体积公式即可得解.
【详解】
由三视图还原几何体,如图,
则该直四棱柱的体积.
故选:B.
2.【2022年全国甲卷】在长方体中,已知与平面和平面所成的角均为,则( )
A. B.AB与平面所成的角为
C. D.与平面所成的角为
【答案】D
【解析】
【分析】
根据线面角的定义以及长方体的结构特征即可求出.
【详解】
如图所示:
不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.
对于A,,,,A错误;
对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;
对于C,,,,C错误;
对于D,与平面所成角为,,而,所以.D正确.
故选:D.
3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
A. B. C. D.
【答案】C
【解析】
【分析】
设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.
【详解】
解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,
则,
所以,
又,
则,
所以,
所以甲圆锥的高,
乙圆锥的高,
所以.
故选:C.
4.【2022年全国乙卷】在正方体中,E,F分别为的中点,则( )
A.平面平面 B.平面平面
C.平面平面 D.平面平面
【答案】A
【解析】
【分析】
证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.
【详解】
解:在正方体中,
且平面,
又平面,所以,
因为分别为的中点,
所以,所以,
又,
所以平面,
又平面,
所以平面平面,故A正确;
如图,以点为原点,建立空间直角坐标系,设,
则,
,
则,,
设平面的法向量为,
则有,可取,
同理可得平面的法向量为,
平面的法向量为,
平面的法向量为,
则,
所以平面与平面不垂直,故B错误;
因为与不平行,
所以平面与平面不平行,故C错误;
因为与不平行,
所以平面与平面不平行,故D错误,
故选:A.
5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A. B. C. D.
【答案】C
【解析】
【分析】
先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.
【详解】
设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,
设四边形ABCD对角线夹角为,
则
(当且仅当四边形ABCD为正方形时等号成立)
即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为
又
则
当且仅当即时等号成立,
故选:C
6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】
依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
棱台上底面积,下底面积,
∴
.
故选:C.
7.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】
设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.
【详解】
∵ 球的体积为,所以球的半径,
设正四棱锥的底面边长为,高为,
则,,
所以,
所以正四棱锥的体积,
所以,
当时,,当时,,
所以当时,正四棱锥的体积取最大值,最大值为,
又时,,时,,
所以正四棱锥的体积的最小值为,
所以该正四棱锥体积的取值范围是.
故选:C.
8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.
【详解】
设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.
故选:A.
9.【2022年北京】已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为( )
A. B. C. D.
【答案】B
【解析】
【分析】
求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.
【详解】
设顶点在底面上的投影为,连接,则为三角形的中心,
且,故.
因为,故,
故的轨迹为以为圆心,1为半径的圆,
而三角形内切圆的圆心为,半径为,
故的轨迹圆在三角形内部,故其面积为
故选:B
10.【2022年浙江】某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.
【详解】
由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为 ,圆台的下底面半径为 ,所以该几何体的体积 .
故选:C.
11.【2022年浙江】如图,已知正三棱柱,E,F分别是棱上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则( )
A. B. C. D.
【答案】A
【解析】
【分析】
先用几何法表示出,再根据边长关系即可比较大小.
【详解】
如图所示,过点作于,过作于,连接,
则,,,
,,,
所以,
故选:A.
12.【2022年新高考1卷】(多选)已知正方体,则( )
A.直线与所成的角为 B.直线与所成的角为
C.直线与平面所成的角为 D.直线与平面ABCD所成的角为
【答案】ABD
【解析】
【分析】
数形结合,依次对所给选项进行判断即可.
【详解】
如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
因为四边形为正方形,则 ,故直线与所成的角为,A正确;
连接,因为平面,平面,则,
因为 ,,所以平面,
又平面,所以,故B正确;
连接,设,连接,
因为平面,平面,则,
因为,,所以平面,
所以为直线与平面所成的角,
设正方体棱长为,则,,,
所以,直线与平面所成的角为,故C错误;
因为平面,所以为直线与平面所成的角,易得,故D正确.
故选:ABD
13.【2022年新高考2卷】(多选)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A. B.
C. D.
【答案】CD
【解析】
【分析】
直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.
【详解】
设,因为平面,,则,
,连接交于点,连接,易得,
又平面,平面,则,又,平面,则平面,
又,过作于,易得四边形为矩形,则,
则,,
,则,,,
则,则,,,故A、B错误;C、D正确.
故选:CD.
14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.
(1)证明:平面;
(2)求该包装盒的容积(不计包装盒材料的厚度).
【答案】(1)证明见解析;
(2).
【解析】
【分析】
(1)分别取的中点,连接,由平面知识可知,,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出;
(2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出.
(1)
如图所示:,
分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面.
(2)
如图所示:,
分别取中点,由(1)知,且,同理有,,,,由平面知识可知,,,,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍.
因为,,点到平面的距离即为点到直线的距离,,所以该几何体的体积.
15.【2022年全国甲卷】在四棱锥中,底面.
(1)证明:;
(2)求PD与平面所成的角的正弦值.
【答案】(1)证明见解析;
(2).
【解析】
【分析】
(1)作于,于,利用勾股定理证明,根据线面垂直的性质可得,从而可得平面,再根据线面垂直的性质即可得证;
(2)以点为原点建立空间直角坐标系,利用向量法即可得出答案.
(1)
证明:在四边形中,作于,于,
因为,
所以四边形为等腰梯形,
所以,
故,,
所以,
所以,
因为平面,平面,
所以,
又,
所以平面,
又因平面,
所以;
(2)
解:如图,以点为原点建立空间直角坐标系,
,
则,
则,
设平面的法向量,
则有,可取,
则,
所以与平面所成角的正弦值为.
16.【2022年全国乙卷】如图,四面体中,,E为AC的中点.
(1)证明:平面平面ACD;
(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.
【答案】(1)证明详见解析
(2)
【解析】
【分析】
(1)通过证明平面来证得平面平面.
(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.
(1)
由于,是的中点,所以.
由于,所以,
所以,故,
由于,平面,
所以平面,
由于平面,所以平面平面.
(2)
依题意,,三角形是等边三角形,
所以,
由于,所以三角形是等腰直角三角形,所以.
,所以,
由于,平面,所以平面.
由于,所以,
由于,所以,
所以,所以,
由于,所以当最短时,三角形的面积最小值.
过作,垂足为,
在中,,解得,
所以,
所以.
过作,垂足为,则,所以平面,且,
所以,
所以.
17.【2022年全国乙卷】如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
【答案】(1)证明过程见解析
(2)与平面所成的角的正弦值为
【解析】
【分析】
(1)根据已知关系证明,得到,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;
(2)根据勾股定理逆用得到,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.
(1)
因为,E为的中点,所以;
在和中,因为,
所以,所以,又因为E为的中点,所以;
又因为平面,,所以平面,
因为平面,所以平面平面.
(2)
连接,由(1)知,平面,因为平面,
所以,所以,
当时,最小,即的面积最小.
因为,所以,
又因为,所以是等边三角形,
因为E为的中点,所以,,
因为,所以,
在中,,所以.
以为坐标原点建立如图所示的空间直角坐标系,
则,所以,
设平面的一个法向量为,
则,取,则,
又因为,所以,
所以,
设与平面所成的角的正弦值为,
所以,
所以与平面所成的角的正弦值为.
18.【2022年新高考1卷】如图,直三棱柱的体积为4,的面积为.
(1)求A到平面的距离;
(2)设D为的中点,,平面平面,求二面角的正弦值.
【答案】(1)
(2)
【解析】
【分析】
(1)由等体积法运算即可得解;
(2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解.
(1)
在直三棱柱中,设点A到平面的距离为h,
则,
解得,
所以点A到平面的距离为;
(2)
取的中点E,连接AE,如图,因为,所以,
又平面平面,平面平面,
且平面,所以平面,
在直三棱柱中,平面,
由平面,平面可得,,
又平面且相交,所以平面,
所以两两垂直,以B为原点,建立空间直角坐标系,如图,
由(1)得,所以,,所以,
则,所以的中点,
则,,
设平面的一个法向量,则,
可取,
设平面的一个法向量,则,
可取,
则,
所以二面角的正弦值为.
19.【2022年新高考2卷】如图,是三棱锥的高,,,E是的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
【答案】(1)证明见解析
(2)
【解析】
【分析】
(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证;
(2)过点作,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;
(1)
证明:连接并延长交于点,连接、,
因为是三棱锥的高,所以平面,平面,
所以、,
又,所以,即,所以,
又,即,所以,,
所以
所以,即,所以为的中点,又为的中点,所以,
又平面,平面,
所以平面
(2)
解:过点作,如图建立平面直角坐标系,
因为,,所以,
又,所以,则,,
所以,所以,,,,所以,
则,,,
设平面的法向量为,则,令,则,,所以;
设平面的法向量为,则,令,则,,所以;
所以
设二面角为,由图可知二面角为钝二面角,
所以,所以
故二面角的正弦值为;
20.【2022年北京】如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.
(1)求证:平面;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
【答案】(1)见解析
(2)见解析
【解析】
【分析】
(1)取的中点为,连接,可证平面平面,从而可证平面.
(2)选①②均可证明平面,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.
(1)
取的中点为,连接,
由三棱柱可得四边形为平行四边形,
而,则,
而平面,平面,故平面,
而,则,同理可得平面,
而平面,
故平面平面,而平面,故平面,
(2)
因为侧面为正方形,故,
而平面,平面平面,
平面平面,故平面,
因为,故平面,
因为平面,故,
若选①,则,而,,
故平面,而平面,故,
所以,而,,故平面,
故可建立如所示的空间直角坐标系,则,
故,
设平面的法向量为,
则,从而,取,则,
设直线与平面所成的角为,则
.
若选②,因为,故平面,而平面,
故,而,故,
而,,故,
所以,故,
而,,故平面,
故可建立如所示的空间直角坐标系,则,
故,
设平面的法向量为,
则,从而,取,则,
设直线与平面所成的角为,则
.
21.【2022年浙江】如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;
(2).
【解析】
【分析】
(1)过点、分别做直线、的垂线、并分别交于点、,由平面知识易得,再根据二面角的定义可知,,由此可知,,,从而可证得平面,即得;
(2)由(1)可知平面,过点做平行线,所以可以以点为原点,,、所在直线分别为轴、轴、轴建立空间直角坐标系,求出平面的一个法向量,以及,即可利用线面角的向量公式解出.
(1)
过点、分别做直线、的垂线、并分别交于点交于点、.
∵四边形和都是直角梯形,,,由平面几何知识易知,,则四边形和四边形是矩形,∴在Rt和Rt,,
∵,且,
∴平面是二面角的平面角,则,
∴是正三角形,由平面,得平面平面,
∵是的中点, ,又平面,平面,可得,而,∴平面,而平面.
(2)
因为平面,过点做平行线,所以以点为原点, ,、所在直线分别为轴、轴、轴建立空间直角坐标系,
设,则,
设平面的法向量为
由,得,取,
设直线与平面所成角为,
∴.
1.(2022·全国·模拟预测)已知正方体中,E,G分别为,的中点,则直线,CE所成角的余弦值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据异面直线所成角的定义,取AB的中点F,则∠ECF(或其补角)为直线与CE所成角,再解三角形即可得解.
【详解】
如图所示:,
取AB的中点F,连接EF,CF,易知,则∠ECF(或其补角)为直线与CE所成角.不妨设,则,,,由余弦定理得,即直线与CE所成角的余弦值为.
故选:C.
2.(2022·全国·模拟预测(理))如图,在三棱台中,平面,,,,则与平面所成的角为( )
A. B. C. D.
【答案】A
【解析】
【分析】
将棱台补全为棱锥,利用等体积法求到面的距离,结合线面角的定义求与平面所成角的大小.
【详解】
将棱台补全为如下棱锥,
由,,,易知:,,
由平面,平面,则,,
所以,,故,
所以,若到面的距离为h,又,
则,可得,
综上,与平面所成角,则,即.
故选:A
3.(2022·浙江湖州·模拟预测)如图,已知四边形,是以为斜边的等腰直角三角形,为等边三角形,,将沿对角线翻折到在翻折的过程中,下列结论中不正确的是( )
A. B.与可能垂直
C.直线与平面所成角的最大值是 D.四面体的体积的最大是
【答案】C
【解析】
【分析】
对于A,取的中点,即可得到面,A选项可判断
对于B,采用反证法,假设,则面,再根据题目所给的长度即可判断;对于C,当面面时,此时直线与平面所成角有最大值,判断即可;对于D,当面面时,此时四面体的体积有最大值,计算最大体积判断即可
【详解】
如图所示,取的中点,连接
是以为斜边的等腰直角三角形,
为等边三角形,
面 , ,故A正确
对于B,假设,又
面,,
又,,故与可能垂直,故B正确
当面面时,此时面,即为直线与平面所成角
此时,故C错误
当面面时,此时四面体的体积最大,此时的体积为: ,故D正确
故选:C
4.(2022·河南安阳·模拟预测(理))已知球O的体积为,高为1的圆锥内接于球O,经过圆锥顶点的平面截球O和圆锥所得的截面面积分别为,若,则( )
A.2 B. C. D.
【答案】C
【解析】
【分析】
根据给定条件,求出球O半径,平面截球O所得截面小圆半径,圆锥底面圆半径,再求出平面截圆锥所得的截面等腰三角形底边长及高即可计算作答.
【详解】
球O半径为R,由得,平面截球O所得截面小圆半径,由得,
因此,球心O到平面的距离,而球心O在圆锥的轴上,则圆锥的轴与平面所成的角为,
因圆锥的高为1,则球心O到圆锥底面圆的距离为,于是得圆锥底面圆半径,
令平面截圆锥所得截面为等腰,线段AB为圆锥底面圆的弦,点C为弦AB中点,如图,
依题意,,,,弦,
所以.
故选:C
【点睛】
关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.
5.(2022·浙江·模拟预测)如图,矩形所在平面与正方形所在平面互相垂直,,点P在线段上,给出下列命题:
①存在点P,使得直线平面
②存在点P,使得直线平面
③直线与平面所成角的正弦值的取值范围是
④三棱锥的外接球被平面所截取的截面面积是
其中所有真命题的序号是( )
A.①③ B.①④ C.②④ D.①③④
【答案】D
【解析】
【分析】
取EF中点推理判断①;假定平面,分析判断②;确定直线与平面所成角,求出临界值判断③;求出外接圆面积判断④作答.
【详解】
令,连接,令中点为G,连DG,如图,依题意,是的中点,
对于①,在矩形中,,,四边形是平行四边形,直线,
平面,平面,则平面,当P是线段中点G时,直线平面,①正确;
对于②,假定直线平面,由①知,,,当点P在线段上任意位置(除点G外),
均为锐角,即不垂直于,也不垂直于,因此,不存在点P,使得直线平面,②不正确;
对于③,平面平面,在平面内射影在直线上,直线与平面所成角为,
当点P由点E运动到点F的过程中,逐渐减小,当P与E重合时,最大,为,
,当P与F重合时,最小,为,,
所以直线与平面所成角的正弦值的取值范围是,③正确;
对于④,在中,,,,则,
由正弦定理得外接圆直径,半径,圆面积为,
三棱锥的外接球被平面所截取的截面是外接圆,
因此三棱锥的外接球被平面所截取的截面面积是,④正确,
所以所有真命题的序号是①③④.
故选:D
6.(2022·四川省泸县第二中学模拟预测(文))已知是正方体的中心O关于平面的对称点,则下列说法中正确的是( )
A.与是异面直线 B.平面
C. D.平面
【答案】B
【解析】
【分析】
根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断.
【详解】
连接、,交于点,连接、,交于点.
连接、、、、.
由题可知,在平面上,所以与共面,故A错误;
在四边形中,且,所以四边形为平行四边形.
.
平面,平面,平面,故B正确;
由正方体的性质可得,因为,所以,又,平面, ,又,
,而与所成角为,所以显然与不垂直,故C错误;
显然与不垂直,而平面,所以与平面不垂直,故D错误.
故选:B.
7.(2022·北京·北大附中三模)已知平面,直线和,则下列命题中正确的是( )
A.若,则
B.若,则
C.若,则
D.若,则
【答案】A
【解析】
【分析】
对于A选项,垂直于同一条直线的两个平面互相平行;
对于B选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行;
对于C选项,由线面垂直的性质即可判断;
对于D选项,平行于同一个平面的两条直线有可能相交、平行或异面.
【详解】
选项A正确,因为垂直于同一直线的两个平面互相平行;
选项B错误,平面和也可以相交;
选项C错误,直线可能在平面内;
选项D错误,直线和还可能相交或者异面.
故选:A.
8.(2022·云南师大附中模拟预测(理))已知正方形的边长为,将沿对角线折起,使得二面角的大小为90°.若三棱锥的四个顶点都在球的球面上,为边的中点,,分别为线段,上的动点(不包括端点),且,当三棱锥的体积最大时,过点作球的截面,则截面面积的最小值为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据面面垂直的判定定理得平面,继而表示出三棱锥的体积,求出时,取得最大值,在△中,由余弦定理,得,根据球的性质可知,当垂直于截面时,截面圆的面积最小,继而得解.
【详解】
因为正方形的边长为,所以.
如图,由于平面平面,平面平面,又为边的中点,则有,所以平面.设,则,所以三棱锥的体积
,当时,取得最大值.由于,则球O的球心即为,且球O的半径.又在△中,由余弦定理,得,根据球的性质可知,当垂直于截面时,截面圆的面积最小,设其半径为r,所以,则截面面积的最小值为.
故选:D.
9.(2022·浙江·乐清市知临中学模拟预测)如图,正方体的棱长为a,E是棱的动点,则下列说法正确的( )个.
①若E为的中点,则直线平面
②三棱锥的体积为定值
③E为的中点时,直线与平面所成的角正切值为
④过点,C,E的截面的面积的范围是
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
如图,以A为原点,AB,AD,AA1所在直线为x,y,z轴建立空间直角坐标系,对于①、③、④利用向量法计算证明;对于②利用等体积法计算即可判断.
【详解】
如图,以A为原点,AB,AD,AA1所在直线为x,y,z轴建立空间直角坐标系,
则B(a,0,0),C(a,a,0),D(0,a,0),,.
所以,.
对于①:当E为的中点时,.设平面的一个法向量为,
则,不妨令x =1,则,
所以平面A1BD的一个法向量为.
又因为,所以与不垂直,所以直线平面不成立.故①错误;
对于②:三棱锥的体积等于三棱锥的体积.
又,高为a,所以.故②错误;
对于③:当E为的中点时,.平面的一个法向量为,
而.
设直线B1E与平面所成的角为,所以.
所以,所以,
即直线与平面所成的角正切值为.故③正确;
对于④:设.因为,,
所以在上得到投影为.
所以点E到直线的距离为.
当z=0,即D、E重合时,截面为矩形,其面积为.
当时,截面为等腰梯形.设截面交于F.所以,
高,所以其面积为.
记,
所以,所以在上单调递减函数,
所以,即.
因为,所以
当z=a,即D1、E重合时,截面为边长为的正三角形,其面积为.
综上所述:.故④正确.
故选:B
10.(2022·四川成都·模拟预测(理))如图,△ABC为等腰直角三角形,斜边上的中线AD=3,E为线段BD中点,将△ABC沿AD折成大小为的二面角,连接BC,形成四面体C-ABD,若P是该四面体表面或内部一点,则下列说法错误的是( )
A.点P落在三棱锥E-ABC内部的概率为
B.若直线PE与平面ABC没有交点,则点P的轨迹与平面ADC的交线长度为
C.若点在平面上,且满足PA=2PD,则点P的轨迹长度为
D.若点在平面上,且满足PA=2PD,则线段长度为定值
【答案】D
【解析】
【分析】
对于A,求出三棱锥和三棱锥的体积之间的关系,根据几何概型的概率公式即可判断;对于B,根据面面平行的相关知识确定轨迹,即可求得其长度;对于C,建立平面直角坐标系,求出点P的轨迹方程,确定在面ADC内的轨迹,即可求得轨迹长度;对于D,结合题意以及C的分析,可知DP不是定值,从而不是定值,即可判断.
【详解】
如图所示,由题意可知底面BCD,
由于E为线段BD中点,
故 ,
故P落在三棱锥内部的概率为 ,故A正确;
若直线PE与平面ABC没有交点,则P点在过点E和平面ABC平行的平面上,
如图所示,设CD的中点为F,AD的中点为G,连接EF,FG,EG,
则平面EFG平面 ABC,
则点P的轨迹与平面ADC的交线即为GF,
由于△ABC为等腰直角三角形,斜边上的中线AD=3,故 ,
则 ,故B正确;
若点P在平面ACD上,且满足,以D为原点,DC,DA为x,y轴建立平面直角坐标系,如图,
则 ,设 ,则 ,
即,故P点在平面ADC上的轨迹即为该圆被平面ADC截得的圆弧 (如图示),由可得,则,
则点P的轨迹长度为,故C正确;
由题意可知 ,故平面ADC,
故 ,由于P在圆弧上,圆心为M,
故PD的长不是定值,如上图,当 位于N点时, ,
当位于T点时,,故线段PB长度不是定值,D错误,
故选:D
11.(2022·全国·南京外国语学校模拟预测)如图,在三棱台中,,,,侧棱平面,点是棱的中点.
(1)证明:平面平面;
(2)求二面角的正弦值.
【答案】(1)证明见解析
(2)
【解析】
【分析】
(1)先根据线面垂直的性质与判定证明,再根据勾股定理证明,进而根据线面垂直得到平面,从而根据面面垂直的判定证明即可
(2) 为坐标原点,,,的所在的直线分别为,,轴建立空间直角坐标系,再分别求解平面的一个法向量,进而得到面面角的正弦即可
(1)
证明:因为平面,平面,所以,
又,,,平面,所以平面.
又平面,所以.
又因为,,所以,所以.
又,,平面,所以平面,
因为平面,所以平面平面.
(2)
以 为坐标原点,,,的所在的直线分别为,,轴建立空间直角坐标系,如图所示.
因为,,
所以,,,,.
设平面的一个法向量为,设平面的一个法向量为,且,,,,
因为所以令,则,,所以.
又因为所以令,则,,所以.
所以.
设二面角的大小为,则,
所以二面角的正弦值为.
12.(2022·山东·德州市教育科学研究院三模)已知底面ABCD为菱形的直四棱柱,被平面AEFG所截几何体如图所示.
(1)若,求证:;
(2)若,,三棱锥GACD的体积为,直线AF与底面ABCD所成角的正切值为,求锐二面角的余弦值.
【答案】(1)证明见解析
(2)
【解析】
【分析】
(1)根据题意可证平面BDG,可得,得证平面ACE,得,再根据面面平行的性质可证;(2)根据题意可得,,利用空间向量求二面角.
(1)
连接BD,交AC于点O,底面ABCD为菱形,∴,
由直四棱柱得底面ABCD,又平面ABCD,∴,
又,BD,平面BDG,
∴平面BDG,因为平面BDG,
∴
已知,又,AC,平面ACE,
∴平面ACE,
因为平面BDG,∴
∵平面平面CFGD
平面平面,平面平面,
∴,则
(2)
已知,,可求,
由,则
在直四棱柱中,底面ABCD,
所以为直线AF与底面ABCD所成角,,则
在平面ACF内作,可知底面ABCD,如图,以为原点,建立空间直角坐标系,
则,,,,,
则
设平面BCE的法向量为,
则
取,得,,得,
由(1)知平面ACE,所以平面ACE的一个法向量为
则,
所以锐二面角的余弦值为
13.(2022·湖北·模拟预测)如图,四棱台中,上底面是边长为1的菱形,下底面ABCD是边长为2的菱形,平面ABCD且
(1)求证:平面平面;
(2)若直线AB与平面所成角的正弦为,求棱台的体积.
【答案】(1)证明见解析
(2)
【解析】
【分析】
(1)根据题意利用线面垂直的定义与判定可证平面;(2)利用空间向量,根据线面夹角可得,利用台体体积公式计算求解.
(1)
∵菱形ABCD对角线相互垂直,
∴
∵平面ABCD,平面ABCD,
∴
∵,平面,平面
∴平面
∵平面
∴平面平面
(2)
设,则且
∴且,
∴平面ABCD
以O为原点,OA、OB、所在的直线为坐标轴,建立直角坐标系,如图,
则,设,
则
,,,
设平面的一个法向量
则可得,
取,得
由题
整理得,则
∴,
∴
14.(2022·贵州·贵阳一中模拟预测(文))如图,四棱锥中,平面.M是CD中点,N是PB上一点.
(1)若求三棱锥的体积;
(2)是否存在点N,使得平面,若存在求PN的长;若不存在,请说明理由.
【答案】(1);
(2)存在,.
【解析】
【分析】
(1)证得点到平面的距离是,进而可求出结果;
(2)证得,进而可证出平面,从而可求出PN的长.
(1)
,
由面面且交线是,又,面,
所以平面,又MD,
点到平面的距离是,
又,则,
三棱锥的体积.
(2)
存在.
,
连接并延长至于交于点,
,
在中:,
在中:在上取点,使得,
而,则,
又平面,平面,
平面,
在中,,
.
15.(2022·四川省泸县第二中学模拟预测(理))如图,四棱锥中,,底面ABCD是正方形.且平面平面ABCD,.
(1)若,,F为AB的中点,N为BC的中点,证明四边形MENF为梯形;
(2)若点E为PC的中点,试判断在线段AB上是否存在一点F?使得二面角平面角为.若存在,求出的值.若不存在,请说明理由.
【答案】(1)证明见解析
(2)存在,
【解析】
【分析】
(1)首先连接,,,,,根据题意得到且,即可证明四边形为梯形.
(2)首先在平面中,过点作,交于,根据面面垂直的性质得到平面.以为原点,所在直线为轴,所在直线为y轴,所在直线为轴,建立空间直角坐标系,再利用空间向量法求解即可.
(1)
连接,,,,,如图所示:
因为,,
所以,又因为,即中
所以且,
∵中,为的中点,为的中点
所以且,
所以且,
即证:四边形为梯形.
(2)
在线段存在一点F满足,使得二面角平面角为.
因为平面平面,平面平面,
在平面中,过点作,交于.
所以平面.
如图所示,以为原点,所在直线为轴,所在直线为y轴,
所在直线为轴,建立空间直角坐标系,如图所示:
因为,设,四边形为正方形,,
所以,,,,,,
平面PCD的一个法向量,
所以,,
设平面的一个法向量,
,令,则,, ,
因为二面角平面角为,
所以,
解得,所以.
相关试卷
这是一份专题04 空间向量与立体几何 专练-2024届高考数学二轮复习(老高考适用)(含解析),共37页。
这是一份2024高考数学二轮复习压轴题型分类专练(新高考用)-专题04空间向量与立体几何(含解析),共33页。
这是一份新高考数学二轮复习函数培优专题04 函数的解析式(含解析),共6页。