终身会员
搜索
    上传资料 赚现金
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件
    立即下载
    加入资料篮
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件01
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件02
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件03
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件04
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件05
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件06
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件07
    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件08
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件

    展开
    这是一份北师大版数学九年级上册 2.2 第2课时 用配方法求解较复杂的一元二次方程 课件,共18页。

    2.2 用配方法求解一元二次方程第2课时 用配方法求解较复杂的一元二次方程第二章 一元二次方程B·九年级上册1.会用配方法解二次项系数不为1的一元二次方程;.(重点)2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)学习目标问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?步骤:(1)将常数项移到方程的右边,使方程的左边只 含二次项和一次项; (2)两边都加上一次项系数一半的平方. (3)直接用开平方法求出它的解.导入新课用配方法解二次项系数不为1的一元二次方程问题1:观察下面两个是一元二次方程的联系和区别: ① x2 + 6x + 8 = 0 ; ② 3x2 +18x +24 = 0.问题2:用配方法来解 x2 + 6x + 8 = 0 . 解:移项,得 x2 + 6x = -8 , 配方,得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4.想一想怎么来解3x2 +18x +24 例1:用配方法解方程: 3x2 +18x +24 = 0. 解:方程两边同时除以3,得 x2 + 6x + 8 = 0 . 移项,得 x2 + 6x = -8 , 配方, 得 (x + 3)2 = 1. 开平方, 得 x + 3 = ±1. 解得 x1 = -2 , x2= -4 . 在使用配方法过程中若二次项的系数不为1时,需要将二次项系数化为1后,再根据配方法步骤进行求解.结论例2:解方程: 3x2 + 8x -3 = 0. 解:两边同除以3,得 x2 + x - 1=0. 配方,得 x2 + x + ( ) 2 - ( )2 - 1 = 0, (x + )2 - =0. 移项,得 x + =± , 即 x + = 或 x + = . 所以 x1= , x2 = -3 . 例3:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系:h=15t - 5t2.小球何时能达到10m高?解:将 h = 10代入方程式中. 15t - 5t2 = 10. 两边同时除以-5,得 t2 - 3t = -2, 配方,得 t2 - 3t + ( )2= ( )2 - 2, (t - )2 =移项,得 (t - )2 =即 t - = ,或 t - = .所以 t1= 2 , t2 = 1 . ①二次项系数要化为1;②在二次项系数化为1时,常数项也要除以二次项系数;③配方时,两边同时加上一次项系数一半的平方.注意即在1s或2s时,小球可达10m高.配方法的应用典例精析例4.试用配方法说明:不论k取何实数,多项式k2-4k+5的值必定大于零.解:k2-4k+5=k2-4k+4+1=(k-2)2+1因为(k-2)2≥0,所以(k-2)2+1≥1.所以k2-4k+5的值必定大于零.1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则m的值为( ) A. 1 B.1 C.1或2 D.1或-22.应用配方法求最值.(1) 2x2 - 4x+5的最小值;(2) -3x2 + 5x +1的最大值.练一练C解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3 (2) -3x2 + 12x - 16 = -3(x - 2)2 - 4 当x =2时有最大值-4归纳总结配方法的应用1.求最值或证明代数式的值为恒正(或负)对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.1.用配方法解方程: x2 + x = 0. 解:方程两边同时除以 ,得 x2 - 5x + = 0 . 移项,得 x2 - 5x = - , 配方, 得 x2 - 5x + ( )2= ( )2 - . 即 (x + )2 = .当堂练习两边开平方,得 x - = ±即 x - = 或 x - =所以 x1 = x2 = 2.用配方法解方程:3x2 - 4x + 1 = 0. 解:方程两边同时除以 3 ,得 x2 - x + = 0 . 移项,得 x2 - x = - , 配方, 得 x2 - x + ( )2= ( )2 - .即 (x - )2 =两边开平方,得 x - = ±即 x - = 或 x - =所以 x1 = 1 x2 = 3.若 ,求(xy)z 的值.解:对原式配方,得 由代数式的性质可知 4.已知a,b,c为△ABC的三边长,且 试判断△ABC的形状.解:对原式配方,得 由代数式的性质可知 所以,△ABC为等边三角形. 配方法方法在方程两边都配上步骤一移常数项;二配方[配上 ];三写成(x+n)2=p (p ≥0); 四直接开平方法解方程.特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明课堂小结
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map