终身会员
搜索
    上传资料 赚现金
    2021年浙江省温州市中考数学真题试卷 解析版
    立即下载
    加入资料篮
    2021年浙江省温州市中考数学真题试卷  解析版01
    2021年浙江省温州市中考数学真题试卷  解析版02
    2021年浙江省温州市中考数学真题试卷  解析版03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年浙江省温州市中考数学真题试卷 解析版

    展开
    这是一份2021年浙江省温州市中考数学真题试卷 解析版,共24页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2021年浙江省温州市中考数学试卷
    一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分
    1.计算(﹣2)2的结果是(  )
    A.4 B.﹣4 C.1 D.﹣1
    2.直六棱柱如图所示,它的俯视图是(  )

    A. B.
    C. D.
    3.第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为(  )
    A.218×106 B.21.8×107 C.2.18×108 D.0.218×109
    4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有(  )

    A.45人 B.75人 C.120人 D.300人
    5.解方程﹣2(2x+1)=x,以下去括号正确的是(  )
    A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x
    6.如图,图形甲与图形乙是位似图形,O是位似中心,点A,B的对应点分别为点A′,则A′B′的长为(  )

    A.8 B.9 C.10 D.15
    7.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2),则应缴水费为(  )
    A.20a元 B.(20a+24)元
    C.(17a+3.6)元 D.(20a+3.6)元
    8.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,∠AOB=α,则OC2的值为(  )

    A.+1 B.sin2α+1 C.+1 D.cos2α+1
    9.如图,点A,B在反比例函数y=(k>0,x>0),AC⊥x轴于点C,BD⊥x轴于点D,连结AE.若OE=1,OC=,AC=AE,则k的值为(  )

    A.2 B. C. D.2
    10.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则(  )

    A. B. C. D.
    二、填空题(本题有6小题,每小题5分,共30分)
    11.(5分)分解因式:2m2﹣18=   .
    12.(5分)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球   .
    13.(5分)若扇形的圆心角为30°,半径为17,则扇形的弧长为    .
    14.(5分)不等式组的解集为    .
    15.(5分)如图,⊙O与△OAB的边AB相切,切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B,边A′B交线段AO于点C.若∠A′=25°,则∠OCB=   度.

    16.(5分)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2)   ;记图1中小正方形的中心为点A,B,C,图2中的对应点为点A′,B′,则当点A′,B′,圆的最小面积为    .

    三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
    17.(10分)(1)计算:4×(﹣3)+|﹣8|﹣.
    (2)化简:(a﹣5)2+a(2a+8).
    18.(8分)如图,BE是△ABC的角平分线,在AB上取点D
    (1)求证:DE∥BC;
    (2)若∠A=65°,∠AED=45°,求∠EBC的度数.

    19.(8分)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,2分,1分.为了解学生整体体质健康状况
    (1)以下是两位同学关于抽样方案的对话:
    小红:“我想随机抽取七年级男、女生各60人的成绩.”
    小明:“我想随机抽取七、八、九年级男生各40人的成绩.”
    根据如图学校信息,请你简要评价小红、小明的抽样方案.
    如果你来抽取120名学生的测试成绩,请给出抽样方案.
    (2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.
    20.(8分)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
    (1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.
    (2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
    21.(10分)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).
    (1)求抛物线的函数表达式和顶点坐标.
    (2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.
    22.(10分)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧)
    (1)求证:四边形AECF是平行四边形;
    (2)当AB=5,tan∠ABE=,∠CBE=∠EAF时

    23.(12分)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
    营养品信息表
    营养成份
    每千克含铁42毫克
    配料表
    原料
    每千克含铁
    甲食材
    50毫克
    乙食材
    10毫克
    规格
    每包食材含量
    每包单价
    A包装
    1千克
    45元
    B包装
    0.25千克
    12元
    (1)问甲、乙两种食材每千克进价分别是多少元?
    (2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
    ①问每日购进甲、乙两种食材各多少千克?
    ②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时
    24.(14分)如图,在平面直角坐标系中,⊙M经过原点O(2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0)
    (1)求⊙M的半径和直线CM的函数表达式;
    (2)求点D,E的坐标;
    (3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.


    2021年浙江省温州市中考数学试卷
    参考答案与试题解析
    一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分
    1.计算(﹣2)2的结果是(  )
    A.4 B.﹣4 C.1 D.﹣1
    【分析】(﹣2)²表示2个(﹣2)相乘,根据幂的意义计算即可.
    【解答】解:(﹣2)²=(﹣2)×(﹣6)=4,
    故选:A.
    2.直六棱柱如图所示,它的俯视图是(  )

    A. B.
    C. D.
    【分析】根据简单几何体的三视图进行判断即可.
    【解答】解:从上面看这个几何体,看到的图形是一个正六边形,
    故选:C.
    3.第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为(  )
    A.218×106 B.21.8×107 C.2.18×108 D.0.218×109
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:将218000000用科学记数法表示为2.18×108.
    故选:C.
    4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有(  )

    A.45人 B.75人 C.120人 D.300人
    【分析】利用大学生的人数以及所占的百分比可得总人数,用总人数乘以初中生所占的百分比即可求解.
    【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人),
    初中生有300×40%=120(人),
    故选:C.
    5.解方程﹣2(2x+1)=x,以下去括号正确的是(  )
    A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x
    【分析】可以根据乘法分配律先将2乘进去,再去括号.
    【解答】解:根据乘法分配律得:﹣(4x+2)=x,
    去括号得:﹣3x﹣2=x,
    故选:D.
    6.如图,图形甲与图形乙是位似图形,O是位似中心,点A,B的对应点分别为点A′,则A′B′的长为(  )

    A.8 B.9 C.10 D.15
    【分析】根据位似图形的概念列出比例式,代入计算即可.
    【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,
    ∴=,即=,
    解得,A′B′=9,
    故选:B.
    7.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2),则应缴水费为(  )
    A.20a元 B.(20a+24)元
    C.(17a+3.6)元 D.(20a+3.6)元
    【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。
    【解答】解:根据题意知:17a+(20﹣17)(a+1.2)=(20a+2.6)(元)。
    故选:D.
    8.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,∠AOB=α,则OC2的值为(  )

    A.+1 B.sin2α+1 C.+1 D.cos2α+1
    【分析】在Rt△OAB中,sinα=,可得OB的长度,在Rt△OBC中,根据勾股定理OB2+BC2=OC2,代入即可得出答案.
    【解答】解:∵AB=BC=1,
    在Rt△OAB中,sinα=,
    ∴OB=,
    在Rt△OBC中,
    OB3+BC2=OC2,
    ∴OC6=()2+22=.
    故选:A.
    9.如图,点A,B在反比例函数y=(k>0,x>0),AC⊥x轴于点C,BD⊥x轴于点D,连结AE.若OE=1,OC=,AC=AE,则k的值为(  )

    A.2 B. C. D.2
    【分析】根据题意求得B(k,1),进而求得A(k,),然后根据勾股定理得到∴()2=(k)2+()2,解方程即可求得k的值.
    【解答】解:∵BD⊥x轴于点D,BE⊥y轴于点E,
    ∴四边形BDOE是矩形,
    ∴BD=OE=1,
    把y=1代入y=,求得x=k,
    ∴B(k,7),
    ∴OD=k,
    ∵OC=OD,
    ∴OC=k,
    ∵AC⊥x轴于点C,
    把x=k代入y=得,
    ∴AE=AC=,
    ∵OC=EF=k,AF=,
    在Rt△AEF中,AE2=EF5+AF2,
    ∴()2=(k)2+()2,解得k=±,
    ∵在第一象限,
    ∴k=,
    故选:B.

    10.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则(  )

    A. B. C. D.
    【分析】如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CH=DF=a,则AE=BM=CF=DN=2a,想办法求出BH,CG,可得结论.
    【解答】解:如图,过点G作GT⊥CF交CF的延长线于T,AE交DF于N,则AE=BM=CF=DN=2a,

    ∴EN=EM=MF=FN=a,
    ∵四边形ENFM是正方形,
    ∴∠EFH=∠TFG=45°,∠NFE=∠DFG=45°,
    ∵GT⊥TF,DF⊥DG,
    ∴∠TGF=∠TFG=∠DFG=∠DGF=45°,
    ∴TG=FT=DF=DG=a,
    ∴CT=3a,CG==a,
    ∵MH∥TG,
    ∴△CMH∽△CTG,
    ∴CM:CT=MH:TG=7,
    ∴MH=a,
    ∴BH=5a+a=a,
    ∴==,
    故选:C.
    二、填空题(本题有6小题,每小题5分,共30分)
    11.(5分)分解因式:2m2﹣18= 2(m+3)(m﹣3) .
    【分析】原式提取2,再利用平方差公式分解即可.
    【解答】解:原式=2(m2﹣3)
    =2(m+3)(m﹣7).
    故答案为:2(m+3)(m﹣2).
    12.(5分)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球  .
    【分析】用红色球的个数除以球的总个数即可得出答案.
    【解答】解:∵一共有21个只有颜色不同的球,其中红球有5个,
    ∴从中任意摸出1个球是红球的概率为,
    故答案为:.
    13.(5分)若扇形的圆心角为30°,半径为17,则扇形的弧长为  π .
    【分析】根据弧长公式代入即可.
    【解答】解:根据弧长公式可得:
    l===π.
    故答案为:π.
    14.(5分)不等式组的解集为  1≤x<7 .
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解答】解:解不等式x﹣3<4,得:x<2,
    解不等式≥1,
    则不等式组的解集为1≤x<2,
    故答案为:1≤x<7.
    15.(5分)如图,⊙O与△OAB的边AB相切,切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B,边A′B交线段AO于点C.若∠A′=25°,则∠OCB= 85 度.

    【分析】根据切线的性质得到∠OBA=90°,连接OO′,如图,再根据旋转的性质得∠A=∠A′=25°,∠ABA′=∠OBO′,BO=BO′,则判断△OO′B为等边三角形得到∠OBO′=60°,所以∠ABA′=60°,然后利用三角形外角性质计算∠OCB.
    【解答】解:∵⊙O与△OAB的边AB相切,
    ∴OB⊥AB,
    ∴∠OBA=90°,
    连接OO′,如图,
    ∵△OAB绕点B按顺时针方向旋转得到△O′A′B,
    ∴∠A=∠A′=25°,∠ABA′=∠OBO′,
    ∵OB=OO′,
    ∴△OO′B为等边三角形,
    ∴∠OBO′=60°,
    ∴∠ABA′=60°,
    ∴∠OCB=∠A+∠ABC=25°+60°=85°.
    故答案为85.

    16.(5分)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2) 6﹣2 ;记图1中小正方形的中心为点A,B,C,图2中的对应点为点A′,B′,则当点A′,B′,圆的最小面积为  (16﹣8)π .

    【分析】如图,连接FH,由题意可知点A′,O,C′在线段FH上,连接OB′,B′C′,过点O作OH⊥B′C′于H.证明∠EGF=30°,解直角三角形求出JK,OH,B′H,再求出OB′2,可得结论.
    【解答】解:如图,连接FH,O,C′在线段FH上,B′C′.

    ∵大正方形的面积=12,
    ∴FG=GH=2,
    ∵EF=HK=2,
    ∴在Rt△EFG中,tan∠EGF===,
    ∴∠EGF=30°,
    ∵JK∥FG,
    ∴∠KJG=∠EGF=30°,
    ∴d=JK=GK=﹣6)=6﹣2,
    ∵OF=OH=FH=,
    ∴OC′=﹣,
    ∵B′C′∥QH,B′C′=2,
    ∴∠OC′H=∠FHQ=45°,
    ∴OH=HC′=﹣2,
    ∴HB′=2﹣(﹣6)=3﹣,
    ∴OB′5=OH2+B′H2=(﹣1)2+(8﹣)2=16﹣3,
    ∵OA′=OC′<OB′,
    ∴当点A′,B′,圆的最小面积为(16﹣8.
    故答案为:6﹣2,(16﹣8.
    三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
    17.(10分)(1)计算:4×(﹣3)+|﹣8|﹣.
    (2)化简:(a﹣5)2+a(2a+8).
    【分析】(1)运用实数的计算法则可以得到结果;
    (2)结合完全平方公式,运用整式的运算法则可以得到结果.
    【解答】解:(1)原式=﹣12+8﹣3+5
    =﹣6;
    (2)原式=a2﹣10a+25+a7+4a
    =2a8﹣6a+25.
    18.(8分)如图,BE是△ABC的角平分线,在AB上取点D
    (1)求证:DE∥BC;
    (2)若∠A=65°,∠AED=45°,求∠EBC的度数.

    【分析】(1)根据角平分线的定义可得∠DBE=∠EBC,从而求出∠DEB=∠EBC,再利用内错角相等,两直线平行证明即可;
    (2)由(1)中DE∥BC可得到∠C=∠AED=45°,再根据三角形的内角和等于180°求出∠ABC,最后用角平分线求出∠DBE=∠EBC,即可得解.
    【解答】解:(1)∵BE是△ABC的角平分线,
    ∴∠DBE=∠EBC,
    ∵DB=DE,
    ∵∠DEB=∠DBE,
    ∴∠DEB=∠EBC,
    ∴DE∥BC;
    (2)∵DE∥BC,
    ∴∠C=∠AED=45°,
    在△ABC中,∠A+∠ABC+∠C=180°,
    ∴∠ABC=180°﹣∠A﹣∠C=180°﹣65°﹣45°=70°.
    ∵BE是△ABC的角平分线,
    ∴∠DBE=∠EBC=.
    19.(8分)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,2分,1分.为了解学生整体体质健康状况
    (1)以下是两位同学关于抽样方案的对话:
    小红:“我想随机抽取七年级男、女生各60人的成绩.”
    小明:“我想随机抽取七、八、九年级男生各40人的成绩.”
    根据如图学校信息,请你简要评价小红、小明的抽样方案.
    如果你来抽取120名学生的测试成绩,请给出抽样方案.
    (2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.
    【分析】(1)根据小红和小明抽样的特点进行分析评价即可;
    (2)根据中位数、众数的意义求解即可.
    【解答】解:(1)两人都能根据学校信息合理选择样本容量进行抽样调查,小红的方案考虑到性别的差异,小明的方案考虑到了年级特点,他们抽样调查不具有广泛性和代表性;
    (2)平均数为=2.75(分),
    抽查的120人中,成绩是6分出现的次数最多,因此众数是3分,
    将这120人的得分从小到大排列处在中间位置的两个数都是3分,因此中位数是8分,
    答:这组数据的平均数是2.75分、中位数是3分.
    20.(8分)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
    (1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.
    (2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
    【分析】(1)直接将其中任意四边形向右平移3个单位得出符合题意的图形;
    (2)直接将其中任意一三角形边长扩大为原来的倍,即可得出所求图形.
    【解答】解:(1)如图2所示,即为所求;

    (2)如图3所示,即为所求.

    21.(10分)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).
    (1)求抛物线的函数表达式和顶点坐标.
    (2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.
    【分析】(1)将点(﹣2,0)代入求解.
    (2)分别求出点A,B坐标,根据图象开口方向及顶点坐标求解.
    【解答】解:(1)把(﹣2,0)代入y=ax2﹣2ax﹣8得6=4a+4a﹣6,
    解得a=1,
    ∴抛物线的函数表达式为y=x2﹣3x﹣8,
    ∵y=x2﹣5x﹣8=(x﹣1)5﹣9,
    ∴抛物线顶点坐标为(1,﹣6).
    (2)把x=﹣4代入y=x2﹣4x﹣8得y=(﹣4)2﹣2×(﹣4)﹣8=16,
    ∴m=16,
    把y=7代入函数解析式得7=x5﹣2x﹣8,
    解得n=2或n=﹣3,
    ∵n为正数,
    ∴n=5,
    ∴点A坐标为(﹣4,16),7).
    ∵抛物线开口向上,顶点坐标为(1,
    ∴抛物线顶点在AB下方,
    ∴﹣8<xP<5,﹣9≤yP<16.
    22.(10分)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧)
    (1)求证:四边形AECF是平行四边形;
    (2)当AB=5,tan∠ABE=,∠CBE=∠EAF时

    【分析】(1)证AE∥CF,再证△ABE≌△CDF(AAS),得AE=CF,即可得出结论;
    (2)由锐角三角函数定义和勾股定理求出AE=3,BE=4,再证∠ECF=∠CBE,则tan∠CBE=tan∠ECF,得=,求出EF=﹣2,进而得出答案.
    【解答】(1)证明:∵∠AEB=∠CFD=90°,
    ∴AE⊥BD,CF⊥BD,
    ∴AE∥CF,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴∠ABE=∠CDF,
    在△ABE和△CDF中,

    ∴△ABE≌△CDF(AAS),
    ∴AE=CF,
    ∴四边形AECF是平行四边形;
    (2)解:在Rt△ABE中,tan∠ABE==,
    设AE=4a,则BE=4a,
    由勾股定理得:(3a)3+(4a)2=52,
    解得:a=1或a=﹣2(舍去),
    ∴AE=3,BE=4,
    由(1)得:四边形AECF是平行四边形,
    ∴∠EAF=∠ECF,CF=AE=2,
    ∵∠CBE=∠EAF,
    ∴∠ECF=∠CBE,
    ∴tan∠CBE=tan∠ECF,
    ∴=,
    ∴CF2=EF×BF,
    设EF=x,则BF=x+4,
    ∴52=x(x+4),
    解得:x=﹣5或x=﹣,(舍去),
    即EF=﹣2,
    由(1)得:△ABE≌△CDF,
    ∴BE=DF=4,
    ∴BD=BE+EF+DF=8+﹣2+4=8+.
    23.(12分)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
    营养品信息表
    营养成份
    每千克含铁42毫克
    配料表
    原料
    每千克含铁
    甲食材
    50毫克
    乙食材
    10毫克
    规格
    每包食材含量
    每包单价
    A包装
    1千克
    45元
    B包装
    0.25千克
    12元
    (1)问甲、乙两种食材每千克进价分别是多少元?
    (2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
    ①问每日购进甲、乙两种食材各多少千克?
    ②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时
    【分析】(1)设乙食材每千克进价为a元,则甲食材每千克进价为2a元,根据“用80元购买的甲食材比用20元购买的乙食材多1千克”列分式方程解答即可;
    (2)①设每日购进甲食材x千克,乙食材y千克,根据(1)的结论以及“每日用18000元购进甲、乙两种食材并恰好全部用完”列方程组解答即可;
    ②设A为m包,则B为包,根据“A的数量不低于B的数量”求出m的取值范围;设总利润为W元,根据题意求出W与x的函数关系式,再根据一次函数的性质,即可得到获利最大的进货方案,并求出最大利润.
    【解答】解:(1)设乙食材每千克进价为a元,则甲食材每千克进价为2a元,
    由题意得,
    解得a=20,
    经检验,a=20是所列方程的根,
    ∴2a=40(元),
    答:甲食材每千克进价为40元,乙食材每千克进价为20元;
    (2)①设每日购进甲食材x千克,乙食材y千克,
    由题意得,解得,
    答:每日购进甲食材400千克,乙食材100千克;
    ②设A为m包,则B为,
    ∵A的数量不低于B的数量,
    ∴m≥2000﹣4m,
    ∴m≥400,
    设总利润为W元,根据题意得:
    W=45m+12(2000﹣4m)﹣18000﹣2000=﹣3m+4000,
    ∵k=﹣4<0,
    ∴W随m的增大而减小,
    ∴当m=400时,W的最大值为2800,
    答:当A为400包时,总利润最大.
    24.(14分)如图,在平面直角坐标系中,⊙M经过原点O(2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0)
    (1)求⊙M的半径和直线CM的函数表达式;
    (2)求点D,E的坐标;
    (3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.

    【分析】(1)点M是AB的中点,则点M(1,4),则圆的半径AM==,再用待定系数法即可求解;
    (2)由AM=得:(x﹣1)2+(﹣x+﹣4)2=()2,即可求解;
    (3)①当∠AEP=∠DBO=45°时,则△AEP为等腰直角三角形,即可求解;②∠AEP=∠BDO时,则△EAP∽△DBO,进而求解;③∠AEP=∠BOD时,同理可解.
    【解答】解:(1)∵点M是AB的中点,则点M(1,
    则圆的半径为AM==,
    设直线CM的表达式为y=kx+b,则,解得,
    故直线CM的表达式为y=﹣x+;

    (2)设点D的坐标为(x,﹣x+),
    由AM=得:(x﹣3)2+(﹣x+2=()8,
    解得x=5或﹣3,
    故点D、E的坐标分别为(﹣5、(5;

    (3)过点D作DH⊥OB于点H,则DH=3,
    故∠DBO=45°,

    由点A、E的坐标;
    由点A、E、B、D的坐标得=8,
    同理可得:BD=3,OB=8,
    ①当∠AEP=∠DBO=45°时,
    则△AEP为等腰直角三角形,EP⊥AC,
    故点P的坐标为(5,5),
    故OP=5;
    ②∠AEP=∠BDO时,
    ∵∠EAP=∠DBO,
    ∴△EAP∽△DBO,
    ∴,即==,解得AP=8,
    故PO=10;
    ③∠AEP=∠BOD时,
    ∵∠EAP=∠DBO,
    ∴△EAP∽△OBD,
    ∴,即,解得AP=,
    则PO=5+=,
    综上,OP为5或10或.


    相关试卷

    精品解析:2022年浙江省温州市中考数学真题(解析版): 这是一份精品解析:2022年浙江省温州市中考数学真题(解析版),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年浙江省温州市中考数学真题(解析版): 这是一份2022年浙江省温州市中考数学真题(解析版),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省温州市中考数学真题(解析版): 这是一份2023年浙江省温州市中考数学真题(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年浙江省温州市中考数学真题试卷 解析版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map