搜索
    上传资料 赚现金
    英语朗读宝

    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第1页
    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第2页
    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    展开

    这是一份辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共33页。
    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.一元一次不等式的应用(共1小题)
    1.(2021•辽宁)某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.
    (1)求A型公交车和B型公交车每辆各多少万元?
    (2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?
    二.二次函数综合题(共3小题)
    2.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.
    (1)求抛物线的解析式;
    (2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;
    (3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.

    3.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.
    (1)求抛物线的解析式;
    (2)当点D在第二象限且=时,求点D的坐标;
    (3)当△ODF为直角三角形时,请直接写出点D的坐标.


    4.(2021•辽宁)直线y=﹣x+3与x轴相交于点A,与y轴相交于点B,抛物线y=ax2+2x+c经过点A,B,与x轴的另一个交点为C.
    (1)求抛物线的解析式;
    (2)如图1,点D是第一象限内抛物线上的一个动点,过点D作DE∥y轴交AB于点E,DF⊥AB于点F,FG⊥x轴于点G.当DE=FG时,求点D的坐标;
    (3)如图2,在(2)的条件下,直线CD与AB相交于点M,点H在抛物线上,过H作HK∥y轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P为顶点的四边形是正方形时,请直接写出点P的坐标.

    三.三角形综合题(共1小题)
    5.(2021•辽宁)如图,Rt△ABC中,∠ACB=90°,D为AB中点,点E在直线BC上(点E不与点B,C重合),连接DE,过点D作DF⊥DE交直线AC于点F,连接EF.
    (1)如图1,当点F与点A重合时,请直接写出线段EF与BE的数量关系;
    (2)如图2,当点F不与点A重合时,请写出线段AF,EF,BE之间的数量关系,并说明理由;
    (3)若AC=5,BC=3,EC=1,请直接写出线段AF的长.

    四.切线的判定与性质(共2小题)
    6.(2023•辽宁)如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于点E,过点E作EF∥AB,交CA的延长线于点F.
    (1)求证:EF与⊙O相切;
    (2)若∠CAB=30°,AB=8,过点E作EG⊥AC于点M,交⊙O于点G,交AB于点N,求的长.

    7.(2021•辽宁)如图,在⊙O中,∠AOB=120°,=,连接AC,BC,过点A作AD⊥BC,交BC的延长线于点D,DA与BO的延长线相交于点E,DO与AC相交于点F.
    (1)求证:DE是⊙O的切线;
    (2)若⊙O的半径为2,求线段DF的长.

    五.几何变换综合题(共2小题)
    8.(2022•辽宁)在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.
    (1)如图①,当α=20°时,∠AEB的度数是    ;
    (2)如图②,当0°<α<90°时,求证:BD+2CE=AE;
    (3)当0°<α<180°,AE=2CE时,请直接写出的值.


    9.(2023•辽宁)△ABC是等边三角形,点E是射线BC上的一点(不与点B,C重合),连接AE,在AE的左侧作等边三角形AED,将线段EC绕点E逆时针旋转120°,得到线段EF,连接BF,交DE于点M.
    (1)如图1,当点E为BC中点时,请直接写出线段DM与EM的数量关系;
    (2)如图2,当点E在线段BC的延长线上时,请判断(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;
    (3)当BC=6,CE=2时,请直接写出AM的长.

    六.解直角三角形的应用-仰角俯角问题(共1小题)
    10.(2023•辽宁)小亮利用所学的知识对大厦的高度CD进行测量,他在自家楼顶B处测得大厦底部的俯角是30°,测得大厦顶部的仰角是37°,已知他家楼顶B处距地面的高度BA为40米(图中点A,B,C,D均在同一平面内).
    (1)求两楼之间的距离AC(结果保留根号);
    (2)求大厦的高度CD(结果取整数).
    (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

    七.解直角三角形的应用-方向角问题(共2小题)
    11.(2022•辽宁)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数).
    (参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192,≈1.414)

    12.(2021•辽宁)某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.
    (1)求景点B和C处之间的距离;(结果保留根号)
    (2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)


    辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.一元一次不等式的应用(共1小题)
    1.(2021•辽宁)某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.
    (1)求A型公交车和B型公交车每辆各多少万元?
    (2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?
    【答案】见试题解答内容
    【解答】解:(1)设A型公交车每辆x万元,B型公交车每辆y万元,
    由题意得:,
    解得:,
    答:A型公交车每辆45万元,B型公交车每辆60万元;
    (2)设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,
    由题意得:45m≤60(140﹣m),
    解得:m≤80,
    答:该公司最多购买80辆A型公交车.
    二.二次函数综合题(共3小题)
    2.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.
    (1)求抛物线的解析式;
    (2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;
    (3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.

    【答案】(1)y=﹣x2+x+4;
    (2)P(,5);
    (3)Q(0,+)或(0,﹣).
    【解答】解:(1)将点B(3,0),点C(0,4)代入y=ax2+x+c,
    ∴,
    解得,
    ∴抛物线的解析式为y=﹣x2+x+4;
    (2)∵点B(3,0),点C(0,4),
    ∴OB=3,OC=4,
    ∴tan∠OBC=,
    ∴BE=EF,BF=EF,
    ∴△BEF的周长=3EF,
    ∵△BEF的周长是线段PF长度的2倍,
    ∴3EF=2PF,
    设直线BC的解析式为y=kx+4,
    ∴3k+4=0,
    解得k=﹣,
    ∴直线BC的解析式为y=﹣x+4,
    设P(t,﹣t2+t+4),则F(t,﹣t+4),E(t,0),
    ∴EF=﹣t+4,PF=﹣t2+t+4+t﹣4=﹣t2+4t,
    ∴3(﹣t+4)=2(﹣t2+4t),
    解得t=3(舍)或t=,
    ∴P(,5);
    (3)∵y=﹣x2+x+4=﹣(x﹣1)2+,
    ∴P(1,),
    ∵FP⊥x轴,
    ∴F(1,),
    设Q(0,n),
    如图:过点M作MN⊥x轴交于点N,
    ∵∠QBM=90°,
    ∴∠QBO+∠MBN=90°,
    ∵∠QBO+∠OQB=90°,
    ∴∠MBN=∠OQB,
    ∵BQ=BM,
    ∴△BQO≌△MBN(AAS),
    ∴QO=BN,MN=OB,
    ∴M(3+n,3),
    设直线QM的解析式为y=k'x+n,
    ∴k'(3+n)+n=3,
    解得k'=,
    ∴直线QM的解析式为y=x+n,
    将点F代入,+n=,
    解得n=+或n=﹣,
    ∴Q(0,+)或(0,﹣).

    3.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.
    (1)求抛物线的解析式;
    (2)当点D在第二象限且=时,求点D的坐标;
    (3)当△ODF为直角三角形时,请直接写出点D的坐标.


    【答案】(1)y=﹣x2﹣3x+4;
    (2)(﹣1,6)或(﹣3,4);
    (3)(,2)或(,2)或(0,4)或(﹣3,4).
    【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,
    ∴,
    解得,
    ∴y=﹣x2﹣3x+4;
    (2)过点D作DG⊥AB交于G,交AC于点H,
    设直线AC的解析式为y=kx+b,
    ∴,
    解得,
    ∴y=x+4,
    设D(n,﹣n2﹣3n+4),H(n,n+4),
    ∴DH=﹣n2﹣4n,
    ∵DH∥OC,
    ∴==,
    ∵OC=4,
    ∴DH=3,
    ∴﹣n2﹣4n=3,
    解得n=﹣1或n=﹣3,
    ∴D(﹣1,6)或(﹣3,4);
    (3)设F(t,t+4),
    当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,
    ∵∠DOF=45°,
    ∴DF=DO,
    ∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,
    ∴∠NDO=∠MFD,
    ∴△MDF≌△NOD(AAS),
    ∴DM=ON,MF=DN,
    ∴DN+ON=﹣t,DN=ON+(﹣t﹣4),
    ∴DN=﹣t﹣2,ON=2,
    ∴D点纵坐标为2,
    ∴﹣x2﹣3x+4=2,
    解得x=或x=,
    ∴D点坐标为(,2)或(,2);
    当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,
    ∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,
    ∴∠LFO=∠KDF,
    ∵DF=FO,
    ∴△KDF≌△LFO(AAS),
    ∴KD=FL,KF=LO,
    ∴KL=t+4﹣t=4,
    ∴D点纵坐标为4,
    ∴﹣x2﹣3x+4=4,
    解得x=0或x=﹣3,
    ∴D(0,4)或(﹣3,4);
    综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).



    4.(2021•辽宁)直线y=﹣x+3与x轴相交于点A,与y轴相交于点B,抛物线y=ax2+2x+c经过点A,B,与x轴的另一个交点为C.
    (1)求抛物线的解析式;
    (2)如图1,点D是第一象限内抛物线上的一个动点,过点D作DE∥y轴交AB于点E,DF⊥AB于点F,FG⊥x轴于点G.当DE=FG时,求点D的坐标;
    (3)如图2,在(2)的条件下,直线CD与AB相交于点M,点H在抛物线上,过H作HK∥y轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P为顶点的四边形是正方形时,请直接写出点P的坐标.

    【答案】(1)y=﹣x2+2x+3;(2)(2,3);(5,2)或(1,2+)或(1,2﹣).
    【解答】解:(1)令x=0,则y=3,
    ∴B(0,3),
    令y=0,则x=3,
    ∴A(3,0),
    ∵抛物线y=ax2+2x+c经过点A,B,
    ∴,
    ∴,
    ∴抛物线解析式为y=﹣x2+2x+3;
    (2)设D(m,﹣m2+2m+3),
    ∵DE∥y轴交AB于点E,
    ∴E(m,﹣m+3),
    ∵OA=OB,
    ∴∠OAB=45°,
    ∴AG=FG,
    ∵DE=FG,
    ∴DE=AG,
    连接GE,延长DE交x轴于点T,
    ∴四边形FGED是平行四边形,
    ∵DF⊥AB,
    ∴EG⊥AB,
    ∴△AEG为等腰直角三角形,
    ∴AT=ET=GT=3﹣m,
    ∴AG=FG=6﹣2m,
    ∴OG=3﹣(6﹣2m)=2m﹣3,
    ∴F点横坐标为2m﹣3,
    ∴FG=﹣2m+6,
    ∴DT=﹣2m+6+3﹣m=﹣3m+9,
    ∴﹣m2+2m+3=﹣3m+9,
    解得m=2或m=3(舍),
    ∴D(2,3);
    (3)令y=0,则﹣x2+2x+3=0,
    解得x=3或x=﹣1,
    ∴C(﹣1,0),
    设CD的解析式为y=kx+b,将C(﹣1,0)、D(2,3)代入,
    ∴,
    ∴,
    ∴y=x+1,
    ∴∠ACM=45°,
    ∴CM⊥AM,
    联立x+1=﹣x+3,
    解得x=1,
    ∴M(1,2),
    ∵以点M,H,K,P为顶点的四边形是正方形,
    ①如图2,图3,当MH⊥MK时,H点在AB上,K点在CD上,


    ∵H点在抛物线上,
    ∴H(3,0)或H(0,3),
    当H(3,0)时,MH=2,
    ∴KH=4,
    ∴K(3,4)
    ∴HK的中点为(3,2),则MP的中点也为(3,2),
    ∴P(5,2);
    当H(0,3)时,MH=,
    ∴KH=2,
    ∴K(0,1),
    ∴HK的中点为(0,2),则MP的中点也为(0,2),
    ∴P(﹣1,2),
    此时HK与y轴重合,
    ∴P(﹣1,2)不符合题意;
    ②如图4,图5,当MH⊥HK时,此时MH⊥y轴,


    ∴H(1+,2)或H(1﹣,2),
    当H(1+,2)时,MH=,
    ∴P(1,2+);
    当H(1﹣,2)时,MH=,
    ∴P(1,2﹣);
    综上所述:当以点M,H,K,P为顶点的四边形是正方形时,P点坐标为(5,2)或(1,2+)或(1,2﹣).

    三.三角形综合题(共1小题)
    5.(2021•辽宁)如图,Rt△ABC中,∠ACB=90°,D为AB中点,点E在直线BC上(点E不与点B,C重合),连接DE,过点D作DF⊥DE交直线AC于点F,连接EF.
    (1)如图1,当点F与点A重合时,请直接写出线段EF与BE的数量关系;
    (2)如图2,当点F不与点A重合时,请写出线段AF,EF,BE之间的数量关系,并说明理由;
    (3)若AC=5,BC=3,EC=1,请直接写出线段AF的长.

    【答案】(1)EF=EB.
    (2)结论:AF2+BE2=EF2,证明见解析部分.
    (3)AF的长为或1.
    【解答】解:(1)结论:EF=BE.
    理由:如图1中,

    ∵AD=DB,DE⊥AB,
    ∴EF=EB.

    (2)结论:AF2+BE2=EF2.
    理由:如图2中,过点A作AJ⊥AC交ED的延长线于J,连接FJ.

    ∵AJ⊥AC,EC⊥AC,
    ∴AJ∥BE,
    ∴∠AJD=∠DEB,
    在△AJD和△BED中,

    ∴△AJD≌△BED(AAS),
    ∴AJ=BE,DJ=DE,
    ∵DF⊥EJ,
    ∴FJ=EF,
    ∵∠FAJ=90°,
    ∴AF2+AJ2=FJ2,
    ∴AF2+BE2=EF2.

    (3)如图3﹣1中,当点E在线段BC上时,设AF=x,则CF=5﹣x.

    ∵BC=3,CE=1,
    ∴BE=2,
    ∵EF2=AF2+BE2=CF2+CE2,
    ∴x2+22=(5﹣x)2+12,
    ∴x=,
    ∴AF=.
    如图3﹣2中,当点E在线段BC的延长线上时,设AF=x,则CF=5﹣x.

    ∵BC=3,CE=1,
    ∴BE=4,
    ∵EF2=AF2+BE2=CF2+CE2,
    ∴x2+42=(5﹣x)2+12,
    ∴x=1,
    ∴AF=1,
    综上所述,满足条件的AF的长为或1.
    四.切线的判定与性质(共2小题)
    6.(2023•辽宁)如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于点E,过点E作EF∥AB,交CA的延长线于点F.
    (1)求证:EF与⊙O相切;
    (2)若∠CAB=30°,AB=8,过点E作EG⊥AC于点M,交⊙O于点G,交AB于点N,求的长.

    【答案】(1)证明见解析;(2)π.
    【解答】(1)证明:连接OE,如图,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵CE平分∠ACB交⊙O于点E,
    ∴∠ACE=∠ACB=45°,
    ∴∠AOE=2∠ACE=90°,
    ∴OE⊥AB,
    ∵EF∥AB,
    ∴OE⊥FE.
    ∵OE为⊙O的半径,
    ∴EF与⊙O相切;
    (2)解:连接OG,OC,
    ∵∠CAB=30°,∠ACB=90°,
    ∴∠B=60°,
    ∵OB=OC,
    ∴△OBC为等边三角形,
    ∴∠COB=60°,
    ∴∠AOC=120°.
    ∵∠ACE=45°,EG⊥AC,
    ∴∠MEC=45°,
    ∴∠GOC=2∠MEC=90°,
    ∴∠AOG=∠AOC﹣∠GOC=30°,
    ∵AB=8,AB是⊙O的直径,
    ∴OA=OG=4,
    ∴的长==.

    7.(2021•辽宁)如图,在⊙O中,∠AOB=120°,=,连接AC,BC,过点A作AD⊥BC,交BC的延长线于点D,DA与BO的延长线相交于点E,DO与AC相交于点F.
    (1)求证:DE是⊙O的切线;
    (2)若⊙O的半径为2,求线段DF的长.

    【答案】(1)详见解答;
    (2).
    【解答】解:(1)如图,连接OC,
    ∵=,
    ∴AC=BC,
    又∵OA=OB,OC=OC,
    ∴△OAC≌△OBC(SSS),
    ∴∠AOC=∠BOC=∠AOB=60°,
    ∴△AOC、△BOC是等边三角形,
    ∴OA=AC=CB=OB,
    ∴四边形OACB是菱形,
    ∴OA∥BD,
    又∵AD⊥BD,
    ∴OA⊥DE,
    ∴DE是⊙O的切线;
    (2)由(1)得AC=OA=2,∠OAC=60°,∠DAC=90°﹣60°=30°,
    在Rt△ACD中,∠DAC=30°,AC=2,
    ∴DC=AC=1,AD=AC=,
    在Rt△AOD中,由勾股定理得,
    OD===,
    ∵OA∥BD,
    ∴△CFD∽△AFO,
    ∴=,
    又∵=sin30°=,AC=OA=2,
    ∴=,
    ∴=,
    即DF=OD=.

    五.几何变换综合题(共2小题)
    8.(2022•辽宁)在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.
    (1)如图①,当α=20°时,∠AEB的度数是  45° ;
    (2)如图②,当0°<α<90°时,求证:BD+2CE=AE;
    (3)当0°<α<180°,AE=2CE时,请直接写出的值.


    【答案】(1)45°;
    (2)证明见解析;
    (3)2+2或2﹣2.
    【解答】(1)解:∵线段AB绕点A逆时针旋转α至AD,α=20°,
    ∴∠BAD=20°,AB=AD,
    ∴∠ADB=∠ABD=×(180°﹣20°)=80°,
    又∵∠BAC=90°,
    ∴∠DAC=70°,
    ∵AE平分∠DAC,
    ∴∠DAE=∠DAC=35°,
    ∴∠AEB=∠ADB﹣∠DAE=80°﹣35°=45°,
    故答案为:45°;
    (2)证明:延长DB到F,使BF=CE,连接AF,

    ∵AB=AC,AD=AB,
    ∴AD=AC,
    ∵AE平分∠DAC,
    ∴∠DAE=∠CAE,
    又∵AE=AE,
    ∴△ADE≌△ACE(SAS),
    ∴∠DEA=∠CEA,∠ADE=∠ACE,DE=CE,
    ∵AB=AD,
    ∴∠ABD=∠ADB,
    ∵∠ADE+∠ADB=180°,
    ∴∠ACE+∠ABD=180°,
    ∵∠BAC=90°,
    ∴∠BEC=360°﹣(∠ACE+∠ABD)﹣∠BAC=360°﹣180°﹣90°=90°,
    ∵∠DEA=∠CEA,
    ∴∠DEA=∠CEA=90°=45°,
    ∵∠ABF+∠ABD=180°,∠ACE+∠ABD=180°,
    ∴∠ABF=∠ACE,
    ∵AB=AC,BF=CE,
    ∴△ABF≌△ACE(SAS),
    ∴AF=AE,∠AFB=∠AEC=45°,
    ∴∠FAE=180°﹣45°﹣45°=90°,
    在Rt△AFE中,∠FAE=90°,
    ∵cos∠AEF=,
    ∴EF=,
    ∵EF=BF+BD+DE=CE+BD+CE=BD+2CE,
    ∴BD+2CE=AE;
    (3)解:如图3,当0°<α<90°时,

    由(2)可知BD+2CE=AE,CE=DE,
    ∵AE=2CE,
    ∴BD+2DE=2DE,
    ∴=2;
    如图4,当90°<α<180°时,

    在BD上截取BF=DE,连接AF,方法同(2)可证△ADE≌△ACE(SAS),
    ∴DE=CE,
    ∵AB=AC=AD,
    ∴∠ABF=∠ADE,
    ∴△ABF≌△ADE(SAS),
    ∴AF=AE,∠BAF=∠DAE,
    又∵∠DAE=∠CAE,
    ∴∠BAF=∠CAE,
    ∴∠EAF=∠FAC+∠CAE=∠FAC+∠BAF=∠BAC=90°,
    ∴△AEF是等腰直角三角形,
    ∴EF=AE,
    ∴BD=BF+DE+EF=2DE+AE,
    ∵AE=2CE=2DE,
    ∴BD=2DE+2DE,
    ∴+2.
    综上所述,的值为2+2或2﹣2.
    9.(2023•辽宁)△ABC是等边三角形,点E是射线BC上的一点(不与点B,C重合),连接AE,在AE的左侧作等边三角形AED,将线段EC绕点E逆时针旋转120°,得到线段EF,连接BF,交DE于点M.
    (1)如图1,当点E为BC中点时,请直接写出线段DM与EM的数量关系;
    (2)如图2,当点E在线段BC的延长线上时,请判断(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;
    (3)当BC=6,CE=2时,请直接写出AM的长.

    【答案】(1)DM=EM;
    (2)DM=EM仍然成立;
    (3)AM=或.
    【解答】解:(1)∵△ABC是等边三角形,点E是BC的中点,
    ∴∠BAC=60°,∠BAE=,
    ∴∠BAE=30°,
    ∵△ADE是等边三角形,
    ∴∠DAE=60°,
    ∴∠BAD=∠DAE﹣∠BAE=60°﹣30°=30,
    ∴∠DAE=∠BAE,
    ∴DM=EM;
    (2)如图1,

    DM=EM仍然成立,理由如下:
    连接BD,
    ∵△ABC和△ADE是等边三角形,
    ∴∠ABC=∠BAC=∠DAE=∠ACB=60°,AB=AC,AD=AE,
    ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴∠ABD=∠ACE=180°﹣∠ACB=120°,BD=CE,
    ∴∠DBE=∠ABD﹣∠ABC=120°﹣60°=60°,
    ∴∠DBE+∠BEF=60°+120°=180°,
    ∴BD∥EF,
    ∵CE=EF,
    ∴BD=EF,
    ∴四边形BDFE是平行四边形,
    ∴DM=EM;
    (3)如图2,

    当点E在BC的延长线上时,
    作AG⊥BC于G,
    ∵∠ACB=60°,
    ∴CG=AC•cos60°=AC=3,
    AG=AC•sin60°=AC=3,
    ∴EG=CG+CE=3+2=5,
    ∴AE==2,
    由(2)知:DM=EM,
    ∴AM⊥DE,
    ∴∠AME=90°,
    ∵∠AED=60°,
    ∴AM=AE•sin60°=2×=,
    如图3,

    当点E在BC上时,
    作AG⊥BC于G,
    由上知:AG=3,CG=3,
    ∴EG=CG﹣CE=3﹣2=1,
    ∴AE=,
    ∴AM=2×=,
    综上所述:AM=或.
    六.解直角三角形的应用-仰角俯角问题(共1小题)
    10.(2023•辽宁)小亮利用所学的知识对大厦的高度CD进行测量,他在自家楼顶B处测得大厦底部的俯角是30°,测得大厦顶部的仰角是37°,已知他家楼顶B处距地面的高度BA为40米(图中点A,B,C,D均在同一平面内).
    (1)求两楼之间的距离AC(结果保留根号);
    (2)求大厦的高度CD(结果取整数).
    (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

    【答案】(1)两楼之间的距离AC为40米;
    (2)大厦的高度CD约为92米.
    【解答】解:(1)过点B作BE⊥CD,垂足为E,

    由题意得:AB=CE=40米,BE=AC,
    在Rt△BEC中,∠CBE=30°,
    ∴BE===40(米),
    ∴BE=AC=40(米),
    ∴两楼之间的距离AC为40米;
    (2)在Rt△BED中,∠DBE=37°,
    ∴DE=BE•tan37°≈40×0.75=51.9(米),
    ∵CE=40米,
    ∴DC=DE+CE=51.9+40≈92(米),
    ∴大厦的高度CD约为92米.
    七.解直角三角形的应用-方向角问题(共2小题)
    11.(2022•辽宁)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数).
    (参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192,≈1.414)

    【答案】此时货轮与A港口的距离约为141海里.
    【解答】解:过点B作BD⊥AC,垂足为D,

    由题意得:
    ∠BAC=25°+25°=50°,∠BCA=70°﹣25°=45°,
    在Rt△ABD中,AB=100海里,
    ∴AD=AB•cos50°≈100×0.643=64.3(海里),
    BD=AB•sin50°≈100×0.766=76.6(海里),
    在Rt△BDC中,CD==76.6(海里),
    ∴AC=AD+CD=64.3+76.6≈141(海里),
    ∴此时货轮与A港口的距离约为141海里.

    12.(2021•辽宁)某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.
    (1)求景点B和C处之间的距离;(结果保留根号)
    (2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)

    【答案】(1)300m;
    (2)205m.
    【解答】解:(1)过点C作CD⊥AB于点D,
    由题意得,∠A=30°,∠BCE=75°,AC=600m,
    在Rt△ACD中,∠A=30°,AC=600,
    ∴CD=AC=300(m),
    AD=AC=300(m),
    ∵∠BCE=75°=∠A+∠B,
    ∴∠B=75°﹣∠A=45°,
    ∴CD=BD=300(m),
    BC=CD=300(m),
    答:景点B和C处之间的距离为300m;
    (2)由题意得.
    AC+BC=(600+300)m,
    AB=AD+BD=(300+300)m,
    AC+BC﹣AB=(600+300)﹣(300+300)
    ≈204.6
    ≈205(m),
    答:大桥修建后,从景点A到景点B比原来少走约205m.

    相关试卷

    辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共34页。试卷主要包含了,与y轴交于点C等内容,欢迎下载使用。

    辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共35页。试卷主要包含了,交y轴于点C,,与y轴交于点C,,且AE=CF等内容,欢迎下载使用。

    辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共35页。试卷主要包含了,交y轴于点C,,与y轴交于点C,,且AE=CF等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map