![辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类01](http://img-preview.51jiaoxi.com/2/3/14867353/0-1696132966899/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类02](http://img-preview.51jiaoxi.com/2/3/14867353/0-1696132966974/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类03](http://img-preview.51jiaoxi.com/2/3/14867353/0-1696132967007/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.分式的化简求值(共3小题)
1.(2023•盘锦)先化简,再求值:(+)÷,其中x=+()0﹣()﹣1.
2.(2022•盘锦)先化简,再求值:,其中.
3.(2021•盘锦)先化简,再求值:÷﹣,其中x=+4.
二.待定系数法求反比例函数解析式(共1小题)
4.(2022•盘锦)如图,平面直角坐标系xOy中,四边形OABC是菱形,点A在y轴正半轴上,点B的坐标是(﹣4,8),反比例函数的图象经过点C.
(1)求反比例函数的解析式;
(2)点D在边CO上,且,过点D作DE∥x轴,交反比例函数的图象于点E,求点E的坐标.
三.二次函数的应用(共2小题)
5.(2021•盘锦)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.
(1)当x>4时,完成以下两个问题:
①请补全下面的表格:
A型
B型
车床数量/台
x
每台车床获利/万元
10
②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?
(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.
6.(2022•盘锦)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
四.三角形的外接圆与外心(共1小题)
7.(2023•盘锦)如图,△ABC内接于⊙O,AB为⊙O的直径,延长AC到点G,使得CG=CB,连接GB.过点C作CD∥GB,交AB于点F,交⊙O于点D,过点D作DE∥AB,交GB的延长线于点E.
(1)求证:DE与⊙O相切.
(2)若AC=4,BC=2,求BE的长.
五.切线的判定与性质(共2小题)
8.(2022•盘锦)如图,四边形ABCD是正方形,点A,点B在⊙O上,边DA的延长线交⊙O于点E,对角线DB的延长线交⊙O于点F,连接EF并延长至点G,使∠FBG=∠FAB.
(1)求证:BG与⊙O相切;
(2)若⊙O的半径为1,求AF的长.
9.(2021•盘锦)如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.
(1)求证:BD与⊙O相切;
(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.
六.解直角三角形的应用-仰角俯角问题(共1小题)
10.(2023•盘锦)如图,一人在道路上骑行,BD段是坡路,其余为平路,当他路过A,B两点时,一架无人机从空中的C点处测得A,B两点的俯角分别为30°和45°,AB=40m,BD=20m,∠BDF=159°,点A,B,C,D,E,F在同一平面内,CE是无人机到平路DF的距离,求CE的长.(结果精确到整数,参考数据:≈1.73,sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)
七.列表法与树状图法(共1小题)
11.(2023•盘锦)某校为了解学生平均每天阅读时长情况,随机抽取了部分学生进行抽样调查,将调查结果整理后绘制了以下不完整的统计图表(如图所示).
学生平均每天阅读时长情况统计表
平均每天阅读时长x/min
人数
0<x≤20
20
20<x≤40
a
40<x≤60
25
60<x≤80
15
x>80
10
根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了 名学生,统计表中a= .
(2)求扇形统计图中学生平均每天阅读时长为“60<x≤80”所对应的圆心角度数.
(3)若全校共有1400名学生,请估计平均每天阅读时长为“x>80”的学生人数.
(4)该校某同学从《朝花夕拾》《红岩》《骆驼祥子》《西游记》四本书中选择两本进行阅读,这四本书分别用相同的卡片A,B,C,D标记,先随机抽取一张卡片后不放回,再随机抽取一张卡片,请用列表法或画树状图法,求该同学恰好抽到《朝花夕拾》和《西游记》的概率.
辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.分式的化简求值(共3小题)
1.(2023•盘锦)先化简,再求值:(+)÷,其中x=+()0﹣()﹣1.
【答案】.
【解答】解::(+)÷
=:(+)×
=×+×
=+
=
=,
当x=+()0﹣()﹣1
=+1﹣2
=﹣1时,
原式=
=.
2.(2022•盘锦)先化简,再求值:,其中.
【答案】,.
【解答】解:原式=
=
=
=,
∵=,
∴原式===
3.(2021•盘锦)先化简,再求值:÷﹣,其中x=+4.
【答案】;2.
【解答】解:原式=•﹣
=﹣
=.
把x=+4代入,原式==2.
二.待定系数法求反比例函数解析式(共1小题)
4.(2022•盘锦)如图,平面直角坐标系xOy中,四边形OABC是菱形,点A在y轴正半轴上,点B的坐标是(﹣4,8),反比例函数的图象经过点C.
(1)求反比例函数的解析式;
(2)点D在边CO上,且,过点D作DE∥x轴,交反比例函数的图象于点E,求点E的坐标.
【答案】(1);
(2)(﹣7,).
【解答】解:(1)根据题意,过点B作BF⊥y轴,垂足为F,如图:
∵四边形OABC是菱形,
设点A为(0,m),
∴OA=BC=AB=m,
∵点B的坐标为(﹣4,8),
∴BF=4,AF=8﹣m,
在直角△ABF中,由勾股定理,则AB2=BF2+AF2,即m2=42+(8﹣m)2,
解得:m=5,
∴OA=BC=AB=5,
∴点C的坐标为(﹣4,3),
把点C代入,得k=﹣4×3=﹣12,
∴反比例函数的解析式为;
(2)作DG⊥x轴,CH⊥x轴,垂足分别为G、H,如图,
∵,
∴,
∵DG∥CH,
∴△ODG∽△OCH,
∴,
∵点C的坐标为(﹣4,3),
∴OH=4,CH=3,
∴,
∴,,
∴点D的纵坐标为,
∵DE∥x轴,
∴点E的纵坐标为,
∴,解得x=﹣7,
∴点E的坐标为(﹣7,).
三.二次函数的应用(共2小题)
5.(2021•盘锦)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.
(1)当x>4时,完成以下两个问题:
①请补全下面的表格:
A型
B型
车床数量/台
14﹣x
x
每台车床获利/万元
10
21﹣x
②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?
(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.
【答案】(1)①14﹣x,21﹣x;②生产并销售B型车床10台;
(2)当生产并销售A,B两种车床各为9台、5台或8台、6台时,使获得的总利润W最大;最大利润为170万元.
【解答】解:(1)①由题意得,生产并销售B型车床x台时,生产并销售A型车床(14﹣x)台,当x>4时,每台B型车床可以获利[17﹣(x﹣4)]=(21﹣x)万元.
故答案应为:14﹣x,21﹣x;
②由题意得方程10(14﹣x)+70=[17﹣(x﹣4)]x,
解得x1=10,x2=21(舍去),
答:生产并销售B型车床10台;
(2)当0<x≤4时,总利润W=10(14﹣x)+17x,
整理得,W=7x+140,
∵7>0,
∴当x=4时总利润W最大为7×4+140=168(万元);
当x>4时,总利润
W=10(14﹣x)+[17﹣(x﹣4)]x,
整理得W=﹣x2+11x+140,
∵﹣1<0,
∴当x=﹣=5.5时总利润W最大,
又由题意x只能取整数,
∴当x=5或x=6时,
∴当x=5时,总利润W最大为﹣52+11×5+140=170(万元)
又∵168<170,
∴当x=5或x=6时,总利润W最大为170万元,
而14﹣5=9,
14﹣6=8,
答:当生产并销售A,B两种车床各为9台、5台或8台、6台时,使获得的总利润W最大;最大利润为170万元.
6.(2022•盘锦)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
【答案】(1)y=﹣2x+100;
(2)40元或20元;
(3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;
【解答】解:(1)设一次函数的关系式为y=kx+b,
由题图可知,函数图象过点(25,50)和点(35,30).
把这两点的坐标代入一次函数y=kx+b,
得,
解得,
∴一次函数的关系式为y=﹣2x+100;
(2)根据题意,设当天玩具的销售单价是x元,
由题意得,
(x﹣10)×(﹣2x+100)=600,
解得:x1=40,x2=20,
∴当天玩具的销售单价是40元或20元;
(3)根据题意,则w=(x﹣10)×(﹣2x+100),
整理得:w=﹣2(x﹣30)2+800;
∵﹣2<0,
∴当x=30时,w有最大值,最大值为800;
∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.
四.三角形的外接圆与外心(共1小题)
7.(2023•盘锦)如图,△ABC内接于⊙O,AB为⊙O的直径,延长AC到点G,使得CG=CB,连接GB.过点C作CD∥GB,交AB于点F,交⊙O于点D,过点D作DE∥AB,交GB的延长线于点E.
(1)求证:DE与⊙O相切.
(2)若AC=4,BC=2,求BE的长.
【答案】(1)答案见解答过程;
(2).
【解答】(1)证明:连接OD,如图:
∵AB为⊙O的直径,
∴∠ABC=∠BCG=90°,
∵CG=CB,
∴△BCG为等腰直角三角形,
∴∠G=∠CBG=45°,
∵CD∥GB,
∴∠ACD=∠C=45°,∠BCD=∠CBG=45°,
∴∠AOD=2∠ACD=90°,
∵DE∥AB,
∴∠ODE=∠AOD=90°,
即:OD⊥DE,
又点D在⊙O上,
∴OD为⊙O的半径,
∴DE为⊙O的切线,
即:DE与⊙O相切.
(2)解:由(1)可知:∠ABC=90°,∠ACD=∠BCD=45°,∠AOD=90°,
在Rt△ABC中,AC=4,BC=2,
由勾股定理得:,
∴,
∵CD∥GB,AC=4,BC=CG=2,
∴BF:AF=AC:CG=4:2=2:1,
设BF=k,AF=2k,
∴,
∴,
∴,
∴,
在Rt△ODF中,,,
由勾股定理得:,
∵CD∥GB,DE∥AB,
∴四边形DEBF为平行四边形,
∴.
五.切线的判定与性质(共2小题)
8.(2022•盘锦)如图,四边形ABCD是正方形,点A,点B在⊙O上,边DA的延长线交⊙O于点E,对角线DB的延长线交⊙O于点F,连接EF并延长至点G,使∠FBG=∠FAB.
(1)求证:BG与⊙O相切;
(2)若⊙O的半径为1,求AF的长.
【答案】(1)见解析;
(2).
【解答】(1)证明:连接BE,
∵四边形ABCD是正方形,
∴∠BAE=90°,
∴BE是圆O的直径,
∵∠BAF+∠EAF=90°,∠EAF=∠EBF,∠FBG=∠FAB,
∴∠FBG+∠EBF=90°,
∴∠OBG=90°,
故BG是圆O的切线;
(2)解:如图,连接OA,OF,
∵四边形ABCD是正方形,BE是圆的直径,
∴∠EFD=90°,∠FDE=45°,
∴∠FED=45°,
∴∠AOF=90°,
∵OA=OF=1,
∴AF2=AO2+FO2=1+1=2,
∴AF=,AF=﹣(舍去).
9.(2021•盘锦)如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.
(1)求证:BD与⊙O相切;
(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.
【答案】(1)证明见解答;
(2)DE=6.
【解答】(1)证明:如图1,延长DB至H,
∵DG∥BC,
∴∠CBH=∠D,
∵∠A=∠D,
∴∠A=∠CBH,
∵AB是⊙O的直径
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∴∠CBH+∠ABC=90°,
∴∠ABD=90°,
∴BD与⊙O相切;
(2)解:解法一:如图2,连接OF,
∵CF平分∠ACB,
∴∠ACF=∠BCF,
∴,
∴OF⊥AB,
∵BD⊥AB,
∴OF∥BD,
∴△EFO∽△EDB,
∴,
∵AE=OE,
∴,
∴=,
∴OF=4,
∴BE=OE+OB=2+4=6,
∴DE===6.
解法二:如图2,连接OF,
∵AE=OE,
∴OA=OF=2OE,
Rt△OEF中,tan∠OEF==2,
Rt△BED中,tan∠OEF===2,
∴BE=6,
由勾股定理得:DE===6.
六.解直角三角形的应用-仰角俯角问题(共1小题)
10.(2023•盘锦)如图,一人在道路上骑行,BD段是坡路,其余为平路,当他路过A,B两点时,一架无人机从空中的C点处测得A,B两点的俯角分别为30°和45°,AB=40m,BD=20m,∠BDF=159°,点A,B,C,D,E,F在同一平面内,CE是无人机到平路DF的距离,求CE的长.(结果精确到整数,参考数据:≈1.73,sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)
【答案】CE的长约为62m.
【解答】解:如图:延长AB交CE于点H,过点B作BG⊥DF,垂足为G,
由题意得:BG=HE,CM∥AH,
∴∠CAH=∠MCA=30°,∠CBH=∠MCB=45°,
设BH=xm,
∵AB=40m,
∴AH=AB+BH=(x+40)m,
在Rt△ACH中,CH=AH•tan30°=(x+40)m,
在Rt△CBH中,CH=BH•tan45°=x(m),
∴x=(x+40),
解得:x=20+20,
∴CH=(20+20)m,
∵∠BDF=159°,
∴∠BDG=180°﹣∠BDF=21°,
在Rt△BDG中,BD=20m,
∴BG=BD•sin21°≈20×0.36=7.2(m),
∴BG=EH=7.2m,
∴CE=CH+HE=20+20+7.2≈62(m),
∴CE的长约为62m.
七.列表法与树状图法(共1小题)
11.(2023•盘锦)某校为了解学生平均每天阅读时长情况,随机抽取了部分学生进行抽样调查,将调查结果整理后绘制了以下不完整的统计图表(如图所示).
学生平均每天阅读时长情况统计表
平均每天阅读时长x/min
人数
0<x≤20
20
20<x≤40
a
40<x≤60
25
60<x≤80
15
x>80
10
根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了 100 名学生,统计表中a= 30 .
(2)求扇形统计图中学生平均每天阅读时长为“60<x≤80”所对应的圆心角度数.
(3)若全校共有1400名学生,请估计平均每天阅读时长为“x>80”的学生人数.
(4)该校某同学从《朝花夕拾》《红岩》《骆驼祥子》《西游记》四本书中选择两本进行阅读,这四本书分别用相同的卡片A,B,C,D标记,先随机抽取一张卡片后不放回,再随机抽取一张卡片,请用列表法或画树状图法,求该同学恰好抽到《朝花夕拾》和《西游记》的概率.
【答案】(1)100,30;
(2)54°;
(3)140名;
(4).
【解答】解:(1)∵40<x≤60组的人数为25,占比为25%,且25÷25%=100,
∴本次调查共抽取了100名学生;
∵20<x≤40组占比30%,30%×100=30,
∴a=30,
故答案为:100,30;
(2)∵样本中平均每天阅读时长为“60<x≤80”有15名,
且15÷100×360°=54°,
∴扇形统计图中学生平均每天阅读时长为“60<x≤80”所对应的圆心角度数为54°;
(3)∵样本中平均每天阅读时长为“x>80”的学生人数为10人,
且10÷100×1400=140(名),
∴估计平均每天阅读时长为“x>80”的学生人数为140名;
(4)《朝花夕拾》《红岩》《骆驼祥子》《西游记》这四本书分别用相同的卡片A,B,C,D标记,画树状图如下:
一共有12种等可能的情况,其中恰好抽到《朝花夕拾》即A和《西游记》即D有2种可能的情况,
∴P(恰好抽到《朝花夕拾》和《西游记》的)=.
辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共34页。试卷主要包含了,与y轴交于点C等内容,欢迎下载使用。
辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了÷,其中a=,,其中a=4,÷,其中x=+1等内容,欢迎下载使用。
辽宁省大连市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份辽宁省大连市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共14页。试卷主要包含了计算,随之变化等内容,欢迎下载使用。